Bayesian Classification in Computer Vision

Presenter: Dae-Yong

Contents

1. Bayesian Classification (10`)

2. Bayesian Classifier for Image Segmentation (10`)

Classification Problem

- For given data, classify it into the specific class.
 - ex) Object Classification, Image Segmentation, Spam Filtering, etc.

Classification Problem

- For given data, classify it into the specific class.

ex) Object Classification, Image Segmentation, Spam Filtering, etc.

Classification Problem

- For given data(X), classify it into the specific class(C).
 - \rightarrow Can be described as **Probability Model**.

$p(\mathbf{C}|\mathbf{X})$

 As real data is too complicate to explain what it is, extract some FEATURES from the data which can describe the data well.
ex) In CV: Color, Brightness, Edges, ...

Classification Problem

- For given data(X), classify it into the specific class(C).
 - \rightarrow Can be described as **Probability Model**.

$p(\mathbf{C}|\mathbf{X})$

- As real data is **too complicate** to explain what it is, extract some **FEATURES** from the data which can describe the data well.
- Features can be anything ($\coloneqq \infty$): Hard to predict
- Classes are countable: Easier to predict than Features
 - \rightarrow Utilize **Bayesian Rule**

$$p(C|X) = \frac{p(C)p(X|C)}{p(X)}$$
Evidence

Bayesian Classifier

$$p(C|X) = \frac{p(C)p(X|C)}{p(X)}$$
Evidence

- Prior (p(C)): Probability that the class will show up

(Can be obtained from training data)

- Likelihood (p(X|C)): Probability that the features X
 - will show up given class C

(Can be obtained from training data)

- Evidence (p(X)): Probability that the features will show up

(we **don't** need to care about it- **why?**)

■ Goal: Classify the pixels into ROAD or NON-ROAD region

[Input Image]

[Segmentation Result]

- Problem Definition

- For each pixel,

1) if $p(C_{Road}|X) > p(C_{Non-Road}|X)$, the pixel belongs to ROAD 2) if $p(C_{Road}|X) \le p(C_{Non-Road}|X)$, the pixel belongs to NON-ROAD

$$p(\mathbf{C}_{Road}|\mathbf{X}) > p(\mathbf{C}_{Non-Road}|\mathbf{X}) \Rightarrow \frac{p(\mathbf{C}_{Road})\mathbf{p}(\mathbf{X}|\mathbf{C}_{Road})}{\mathbf{p}(\mathbf{X})} > \frac{p(\mathbf{C}_{Non-Road})\mathbf{p}(\mathbf{X}|\mathbf{C}_{Non-Road})}{\mathbf{p}(\mathbf{X})}$$

Road – Non-Road Region Segmentation

- Training Phase
 - Feature: Color R,G,B (Can be anything what you want)

 $p(\mathbf{C}_{Road}|\mathbf{X}) \propto p(\mathbf{C}_{Road}) * p(\mathbf{X}_{red}|\mathbf{C}_{Road}) * p(\mathbf{X}_{green}|\mathbf{C}_{Road}) * p(\mathbf{X}_{blue}|\mathbf{C}_{Road})$

Road – Non-Road Region Segmentation

- Testing Phase
 - For all pixels, compare $p(C_{Road}|\mathbf{X})$ and $p(C_{Non-Road}|\mathbf{X})$

- Road Non-Road Region Segmentation
 - Results

Questions?