

1-d Real Value data 를입력하고,
내부적으로 Distance Matrix 를계산하고,
이값들의 Min 을가져오면 Matrix Profile 이된다.
(Min 이외에 Matirx Profile Index, Motif, Discords 를찾을수도있다.
https://gitlab.com/wooheaven/Python-Study/blob/master/06_MatrixProfile/02_matrixprofile-ts/01_Matrix_Profile_Tutorial.ipynb

This tutorial is funded by:

• NSF IIS-1161997 II

• NSF IIS 1510741

• NSF 544969

• CNS 1544969

• SHF-1527127

• AFRL FA9453-17-C-0024

Any errors or controversial statements are due solely to Mueen and Keogh

https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

Oracle IoT : https://www.datascience.com/blog/sax-
and-matrix-profile-time-series

Behind Story on UCR Time Series on Similarity Search :
DTW -> Matrix Profile

http://practicalquant.blogspot.com/2012/10/mining-time-series-with-trillions-of.html
https://franzbischoff.github.io/tsmp/

Motivation

Given a time series, T and a desired subsequence length, m

m

7

Note that for most time series data mining tasks, we are not interested in any global properties of the time
series, we are only interested in small local subsequences, of this length, m

These subsequences might be about the length of individual heartbeats (for ECGs), individual days (for
social media behavior), individual words (for speech analysis) etc

Motivation

Given a time series, T and a desired subsequence length, m

m

…

|T|-m+1

We can use sliding window of length
m to extract all subsequences of
length m

8

Motivation

Given a time series, T and a desired subsequence length, m

m

…

We can then compute the
pairwise distance among
these subsequences and
store them to a matrix

9

|T|-m+1

0 7.6952 7.7399 …

7.6952 0 7.7106 …

7.7399 7.7106 0 …

… … … …

9

Motivation

Given a time series, T and a desired subsequence length, m

m

…

We can visualize the matrix by
plot the matrix as a image
where blue is more similar
subsequences and red is more
dissimilar subsequences

10

|T|-m+1

10

This equation has 3-pain-point.

https://github.com/wooheaven/PlayOnSandBox/blob/master/02_MP/01_matrixprofile-rwoo/MP_derived_distance_equation.ipynb

The Brute Force Algorithm
• Scan the time series with a sliding window
• Z-Normalize the window
• Calculate Euclidean distance between window

and the query

d(1:n) = 0;

Q = zNorm(query);

for i = 1:n-m+1

d(i) = sqrt(sum((zNorm(T(i:i+m-1))-Q).^2));

end

• How long does this algorithm take?

• The time complexity is 𝑂(𝑛𝑚) in the average and worst cases. More precisely the
window is scanned two times in each iteration of this algorithm. One scan is for z-
normalization, and the other scan is for distance calculation.

• Note that we cannot use any early abandoning or pruning as we need all the distances.

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

Almost an hour

𝑚 = 100

Why

Z-Normalize is ok : ECG hart pattern
https://learn.sparkfun.com/tutorials/ad8232-heart-rate-monitor-hookup-guide
http://ceur-ws.org/Vol-2322/DARLIAP_10.pdf

Z-Normalize is not ok : Stock Pattern
https://m.blog.naver.com/dngineer/221506565764

The distance matrix is symmetric
The diagonal is zero
Cells close to the diagonal are very small

Matrix Profile: a vector of distance between each
subsequence and its nearest neighbor

di,j is the distance between the ith window and
the jth window of the time series

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

ith

jth

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

Matrix Profile from Distance Profiles

D1

D2

Di

Dn-m+1

Why

The Brute Force Algorithm
• Scan the time series with a sliding window
• Z-Normalize the window
• Calculate Euclidean distance between window

and the query

d(1:n) = 0;

Q = zNorm(query);

for i = 1:n-m+1

d(i) = sqrt(sum((zNorm(T(i:i+m-1))-Q).^2));

end

• How long does this algorithm take?

• The time complexity is 𝑂(𝑛𝑚) in the average and worst cases. More precisely the
window is scanned two times in each iteration of this algorithm. One scan is for z-
normalization, and the other scan is for distance calculation.

• Note that we cannot use any early abandoning or pruning as we need all the distances.

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

Almost an hour

𝑚 = 100

Just-in-time Normalization (1 of 3)

• Can we skip the z-normalization scan in each
iteration?

• Yes, if we have the means, standard deviations
and the dot product to calculate the distances.

•z-normalized sequence has
zero mean and one standard
deviation.

• Let’s assume 𝑦 is the z-normalized query, and 𝑥 is
the time series (T), therefore, 𝜇𝑦 = 0 and 𝜎𝑦 = 1

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

𝑑 ෝ𝒙, ෝ𝒚 = 2𝑚(1−
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦
)

Working Formula

Just-in-time Normalization (2 of 3)

• Can we skip the z-normalization scan in each iteration?

• The standard deviations of moving windows of a fixed size
can be calculated in one linear scan.

• In 2016, MATLAB has introduced a function, movstd, that
does the above.

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

• In one pass, calculate cumulative sums of 𝑥 and 𝑥2 and
store

• Subtract two cumulative sums to obtain the sum over
any window

• Use the sums to calculate the standard deviations of all
windows in linear time

𝐶 = σ𝑥 𝐶2 = σ𝑥2

𝑆𝑖
2 = 𝐶𝑖+𝑚

2 − 𝐶𝑖
2𝑆𝑖 = 𝐶𝑖+𝑚 − 𝐶𝑖

Just-in-time Normalization (3 of 3)

• Can we skip the z-normalization scan in each
iteration?

• Still the worst and average cost is 𝑂(𝑛𝑚),
however, the window is scanned only once
per iteration for the dot product.

• Speedup is more than 2X, due to removal of
function calls

d(1:n) = 0;

Q = zNorm(query);

S = movstd(T,[0 m-1]);

for i = 1:n-m+1

d(i) = sqrt(2*(m-sum(T(i:i+m-1).*Q)/S(i)));

end

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

𝑚 = 100

x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

Mueen’s Algorithm for Similarity Search (MASS) (1 of 9)

• Can we improve the just-in-time Normalization algorithm?

• MASS uses a convolution based method to calculate sliding dot products in 𝑂 𝑛 log 𝑛 , in
addition to just-in-time z-normalization technique

• Convolution: If x and y are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials.

• We use convolution to compute all of the sliding dot products between the query and
sliding windows.

Output0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

Convolution

Inputx1 y1x2 x3 x4 y2

y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

Mueen’s Algorithm for Similarity Search (MASS) (2 of 9)

• Computational cost, 𝑂 𝑛 log 𝑛 ,
does not depend on the query
length (𝑚), thus, free of curse of
dimensionality.

• There is no loop. Only known
mathematical and built-in MATLAB
functions are used.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1); %Reverse the query

Q(m+1:n) = 0; %pad zeros

dots = conv(T,Q);

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);

MASS
1.0

The loop has been replaced
by the following three lines.

Vectorized working formula

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

𝑚 = 100

Mueen’s Algorithm for Similarity Search (MASS) (3 of 9)

• Can we improve MASS 1.0?

• Note that convolution doubles the size of the input vectors in the output.

• MASS uses only half of the output of convolution and throws away the remaining half.

• Can we compute just the necessary half? Let’s see what happens inside convolution.

• Convolution in time domain is multiplication in frequency domain.

• conv(x,y) = ifft(fft(double&pad(x)) . fft(double&pad(y))

x1 y2

Double and Pad x Double and Pad y

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3

* X2
* Y1 Y2 Y3 Y4 Y5 Y4

* Y3
* Y2

*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4

* Y3
*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

Complex
Conjugates

Mueen’s Algorithm for Similarity Search (MASS) (4 of 9)

• Can we improve MASS 1.0?

• If we do not double x and y, we obtain a half convolution

• half conv(x,y)= ifft (fft(x) . fft(y))

x1 y2

x y

0 0x2 x3 x4 y1

X1 X2 X3 X2
* Y1 Y2 Y3 Y2

*

Y1X1 Y2X2 Y3
*X3

* Y2
*X2

*

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

conv(x,y) = ifft(fft(double&pad(x)) .

fft(double&pad(y))
half conv(x,y)= ifft (fft(x) . fft(y))

x1 y2

Double and Pad x Double and Pad y

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3

* X2
* Y1 Y2 Y3 Y4 Y5 Y4

* Y3
* Y2

*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4

* Y3
*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

Complex
Conjugates

Mueen’s Algorithm for Similarity Search (MASS) (5 of 9)

• Can we improve MASS 1.0?

• Half convolution adds a constraint, 𝑛 >
𝑚

2
. The constraint is not limiting because the original

assumption is 𝑛 ≫ 𝑚.

x1 y2

Time Series
Reversed and

Padded Query
0 0x2 x3 x4 y1

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

conv(x,y) = ifft(fft(double&pad(x)) .

fft(double&pad(y))
half conv(x,y)= ifft (fft(x) . fft(y))

Mueen’s Algorithm for Similarity Search (MASS) (6 of 9)

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1); %Reverse the query

Q(m+1:n) = 0; %pad zeros

dots = ifft(fft(T).* fft(Q));

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);

The conv(T,Q) has been
replaced, no doubling of sizes

• Computational cost is still 𝑂 𝑛 log 𝑛 ,
does not depend on the query length
(𝑚), thus, free of curse of dimensionality.

• fast Fourier transform (fft) is used as a
subroutine

MASS
2.0

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

𝑚 = 100

STOMP vs SCRIMP

0 500 1000 1500 2000 2500 3000

* Vipin Kumar performed an extensive empirical evaluation and noted that “..on 19 different publicly available data sets, comparing 9 different techniques

(time series discords) is the best overall technique.”. V. Chandola, D. Cheboli, V. Kumar. Detecting Anomalies in a Time Series Database. UMN TR09-004

How to “read” a Matrix Profile: Synthetic Anomaly Example

Where you see relatively high values, you know that the subsequence in the original time
series must be unique in its shape. In fact, the highest point is exactly the definition of Time
Series Discord, perhaps the best anomaly detector for time series*

Must be an anomaly in the
original data, in this region

How to “read” a Matrix Profile: Synthetic Motif Example

Where you see relatively low values, you know that the subsequence in the original time
series must have (at least one) relatively similar subsequence elsewhere in the data.

In fact, the lowest points must be a tieing pair, and correspond exactly to the classic definition
of time series motifs.

0 500 1000 1500 2000 2500 3000

The corresponding subsequence in the raw data at this location, must have at least one similar
subsequence somewhere

Real Example 1 : Seismology

0 10 20seconds

Time:19:23:48.44 Latitude:37.57 Longitude:-118.86 Depth: 5.60 Magnitude: 1.29
Time:20:08:01.13 Latitude:37.58 Longitude:-118.86 Depth: 4.93 Magnitude: 1.09

0 9,000

Seismic Time Series

Matrix Profile

Thanks to C. Yoon, O. O’Reilly, K. Bergen and G. Beroza of Stanford for this data

Zoom-In

The corresponding
subsequence in the
raw data at this

location, must have
at least one similar
earthquake
somewhere

If we see low values in the MP of a seismograph, it means there must have been a repeated earthquake.
Repeated earthquakes can happen decades apart.
Many fundamental problems seismology, including the discovery of foreshocks, aftershocks, triggered
earthquakes, swarms, volcanic activity and induced seismicity, can be reduced to the discovery of these
repeated patterns.

Real Example 2 : New York City Taxi – Abnormal Detection

https://www.kaggle.com/c/new-york-city-taxi-fare-prediction/kernels
https://www.kaggle.com/breemen/nyc-taxi-fare-data-exploration
https://github.com/wooheaven/Python-Study/blob/master/06_MatrixProfile/02_matrixprofile-
ts/02_Matrix_Profile_NYC_Taxi.ipynb
https://aws.amazon.com/ko/blogs/korea/use-the-built-in-amazon-sagemaker-random-cut-
forest-algorithm-for-anomaly-detection/

