
Autonomous Navigation 
on 2D Environments

based on
Motion Planning on Dynamic Environments

Using Velocity Obstacles (Fiorini and Shiller)

Paul Vincent Contreras



Problem Environment

𝐴 is the robot and 𝐵 is the moving object that needs to be 
avoided.

𝐵

𝐴

Moving 
obstacle

Moving 
robot



Problem Environment

Given a robot and an obstacle each moving with a 
velocity 𝑣𝐴 and 𝑣𝐵 respectively, how do we prevent them 
from colliding with each other?



Step 1: Obtain the collision cone

Collision Cone (Definition)

The collision cone 𝐶𝐶𝐴,𝐵 is the set of colliding relative velocities 
between መ𝐴 and ෠𝐵:

𝐶𝐶𝐴,𝐵 = 𝒗𝑨,𝑩 𝜆𝐴,𝐵 ∩ ෠𝐵 ≠ ∅

where 𝑣𝐴,𝐵 is the relative velocity of መ𝐴 with respect to ෠𝐵, 
𝒗𝑨,𝑩 = 𝒗𝑨 − 𝒗𝑩 and 𝜆𝐴,𝐵 is the line of 𝒗𝐴,𝐵. The cone’s apex 

(summit) is መ𝐴.



Step 1: Obtain the collision cone



Step 1: Obtain the collision cone

• First map 𝐵 to the Configuration Space of 𝐴, by reducing 𝐴 to 
the point መ𝐴 and enlarging 𝐵 by the radius of 𝐴 to ෠𝐵.



Collision cone

Notes

• Any relative velocity that lies between the two tangents to ෠𝐵, 𝜆𝑓
and 𝜆𝑟 will cause a collision between 𝐴 and 𝐵.

• Any relative velocity that lies outside 𝐶𝐶𝐴,𝐵 is guaranteed to be 
collision-free provided that ෠𝐵 maintains its current shape and 
speed.

• Collision cones are specific to a particular pair of robot/obstacle.

• If we want to consider the absolute velocities of 𝐴, we add the 
velocity 𝒗𝐵 to each of the velocity in 𝐶𝐶𝐴,𝐵 . The result is what 
we call the velocity obstacle.



Step 2: Add the absolute velocity 
of the obstacle

Vehicle obstacle (Definition)

The velocity obstacle is the set of all velocities of a robot that 
will result in a collision with another robot at some moment in 
time, assuming that the other robot maintains its current velocity.

Formally, it is defined as:
𝑉𝑂 = 𝐶𝐶𝐴,𝐵⨁𝒗𝑩

where ⨁ is the Minkowski vector sum operator.



Minkowsky vector sum

• The Minkowski sum (also known as dilation) of 
two sets of position vectors A and B in Euclidean space is 
formed by adding each vector in A to each vector in B, i.e., the 
set

𝐴 + 𝐵 = 𝑎 + 𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵

Example:

𝐴 = 1,0 , 0,1 , 0,−1 and 𝐵 = 0,0 , 1,1 , 1, −1

The Minkowski sum is:
𝐴 + 𝐵 = 1,0 , 2,1 , 2,−1 , 0,1 , 1,2 , 1,0 , 0,−1 , 1,0 , 1,−2



Velocity obstacle



How do we avoid collisions?

• Generate an avoidance trajectory
• Feasible accelerations

• Reachable Velocities

• Reachable Avoidance Velocities



What are the feasible movements 
of the robot?

The set of feasible accelerations, 𝐹𝐴 𝑡 , that a robot can take 
at time 𝑡 is defined as:

𝐹𝐴 𝑡 = ሷ𝒙 ሷ𝒙 = 𝑓 𝒙, ሶ𝒙, 𝒖 ,𝒖 ∈ 𝑈

where 𝒙 is the position vector, 𝑓(𝒙, ሶ𝒙, 𝒖) represents the robot 
dynamics, 𝒖 is the vector of actuator efforts and 𝑼 is the set of 
admissible controls.



Reachable Velocities

The set of reachable velocities, 𝑅𝑉(𝑡 + ∆𝑡), over the time 
interval ∆𝑡, is defined as:

𝑅𝑉 𝑡 + ∆𝑡 = 𝒗 𝒗 = 𝒗𝑨 𝑡 ⨁∆𝑡 ⋅ 𝐹𝐴 𝑡

RV is computed by scaling 𝐹𝐴 𝑡 by ∆𝑡 and adding it to the 
current velocity of 𝐴.



Reachable Avoidance Velocities

The set of reachable avoidance velocities, 𝑅𝐴𝑉, is defined as:

𝑅𝐴𝑉 𝑡 + ∆𝑡 = 𝑅𝑉 𝑡 + ∆𝑡 ⊖ 𝑉𝑂 𝑡

where ⊖ denotes the operation of set difference.



Parts of the obstacle

GREEN = rear semicircle 𝜕𝐵𝑟
RED = front semicircle 𝜕𝐵𝑓

Using the collision cone diagram, if 
we attach a coordinate frame to the 
center of ෠𝐵, we can specify which is 
the rear and front of the circular 
object:



Structure of Avoidance 
Maneuvers

Lemma 1

Robot 𝐴 is tangent to obstacle 𝐵 at some point 𝑃 ∈ 𝜕𝐵 if 
and only if it follows a trajectory generated by 𝒗𝐴
corresponding to 𝒗𝐴,𝐵 ∈ 𝜆𝑓 , 𝜆𝑟 . The tangency sets in 𝜕𝐵
consist of the shortest segment connecting 𝑇𝑓 = 𝜆𝑓 ∩ 𝜕𝐵
to 𝑌𝑓, and of the shortest segment connecting 𝑇𝑟 = 𝜆𝑟 ∩
𝜕𝐵 to 𝑌𝑟.



Structure of Avoidance 
Maneuvers
What Lemma 1 means

Tangent maneuvers can only be generated only by relative 
velocities on 𝜆𝑓 and 𝜆𝑟.

The actual points of tangency of these maneuvers are different 
from the tangency points 𝑇𝑓 and 𝑇𝑟 , since the points depend on 

the absolute velocities of 𝐴 and 𝐵.



Structure of Avoidance 
Maneuvers

What Lemma 1 means

Velocities on 𝛿𝑓 or 𝛿𝑟 are tangent to ෠𝐵 at some point in time

𝛿𝑟 𝛿𝑓



Structure of Avoidance 
Maneuvers

Lemma 1

Velocities on 𝛿𝑓 or 𝛿𝑟 are tangent to ෠𝐵 at some point in time

𝛿𝑟𝛿𝑓



Structure of Avoidance 
Maneuvers

Lemma 2

The reachable avoidance velocities RAV due to a single obstacle 
consists of at most three non-overlapping subsets 𝑆𝑓 , Sr and 𝑆𝑑 , 
each representing velocities corresponding to front, rear or 
diverging maneuvers respectively.

𝛿𝑟 𝛿𝑓



Structure of Avoidance 
Maneuvers

Lemma 2

• Avoidance maneuvers are classified into three:
• Front maneuvers (𝑆𝑓)

• Rear maneuvers (𝑆𝑟)

• Diverging maneuvers (𝑆𝑑)

𝛿𝑟 𝛿𝑓



Structure of Avoidance 
Maneuvers

Theorem 1

Given a robot 𝐴 and 𝑚 moving obstacles 𝐵𝑗 𝑗 = 1, … ,𝑚 , the 
reachable avoidance set 𝑅𝐴𝑉 consists of at most 3𝑚 subsets, 
each including velocities corresponding to a unique type of 
avoidance maneuver.



How do we develop avoidance 
trajectories?

Generate a tree of feasible maneuvers computed at discrete time 
intervals.

At each time step, the robot should choose a velocity to take so 
that if the moving obstacle changes velocity, the robot would still 
be able to avoid collision.



Proposed Methods

• Global search

• Heuristic search

These proposed methods are tree 
generation algorithms.



Search tree
The search tree represents the available maneuvers a robot can 
take and its corresponding position at each discrete time step. 
Formally defined as:

𝑛𝑗 𝑡𝑖 = 𝒙𝒋, 𝑅𝐴𝑉 𝑡𝑖
𝑜𝑗 ,𝑙 𝑡𝑖 = 𝒗𝒍 𝑡𝑖 𝑣𝑙 𝑡𝑖 ∈ 𝑅𝐴𝑉𝑗 𝑡𝑖
𝑒𝑗 ,𝑘 𝑡𝑖 = 𝑛𝑗 𝑡𝑖 , 𝑛𝑗 𝑡𝑖+1 𝑛𝑘 𝑡𝑖+1 = 𝑛𝑗 𝑡𝑖 + 𝑜𝑗 ,𝑙𝑇 }

where 

1. 𝑛𝑗 𝑡𝑖 is the 𝑗th node at time 𝑡𝑖

2. 𝑅𝐴𝑉𝑗 𝑡𝑖 is the reachable velocity set computed for the node 

𝑛𝑗

3. 𝑜𝑗 ,𝑙 is the 𝑙th operator on node 𝑗 at time 𝑡𝑖

4. 𝑒𝑗 ,𝑘 is the branch between node 𝑛𝑗 at time 𝑡𝑖, and node 𝑛𝑘 at 
time 𝑡𝑖+1.



Search tree

The nodes on the 
tree correspond to 
the positions of the 

robot at times 𝑡𝑖

The branches 
correspond to the 

maneuvers at 
those positions.

The operators expanding 
each node into its 
successors at time 

𝑡𝑖+1 = 𝑡𝑖 + 𝑇 are the 
velocities computed by 

discretizing RAV.



Global search

• Global search is an off-line method 

• Generates reachable avoidance velocities at discrete time 
intervals.

• RAVs are discretized by grids.

• Positions reached by robots are the successors of the node.

• Trajectories generated avoid all obstacles at a specific time 
horizon.



Search tree



Heuristic search

• Heuristic search involves the generation of trajectories on-line.

• Expand nodes that correspond to the robot’s current position 
and generate only one branch per node, depending on a 
heuristic arbitrarily chosen by a path planner.

• Path planners arbitrarily define heuristics that would let the 
robot satisfy a goal.

• Examples:
• Survival of the robot

• Reaching the desired target

• Minimizing a performance criteria

• Selecting a desired trajectory structure

• There is no guarantee that objectives set by the path planners 
will be achieved at any time.



Heuristic search

• In this paper, three kinds of heuristics were used:
• Choosing the highest avoidance velocity along the line to the goal

(TG = to goal)

• Selecting the maximum avoidance velocity with some specified angle 
𝛼 from the line to the goal (MV = maximum velocity)

• Selecting the velocity that avoids the obstacles according to their 
perceived risk. (ST = structure)



Example (step 1)

Assume that the entire RAV set contains 6 points.



Example (step 2)

Assume that the entire RAV set contains 6 points.



Example (step 3)

Assume that the entire RAV set contains 4 points.



Examples

• Avoidance of static obstacles

• Avoidance of fixed and moving obstacles

• Intelligent Highway



Example 1: Avoidance of static 
obstacles

• A point robot avoids eight circular obstacles starting from rest.

• Used MV heuristics.

• Trajectories were computed every 1 s.



Example 2: Avoidance of fixed 
and moving obstacles

• Robot starts from rest at the center.

• The robot should first avoid static objects at the center and then 
large moving objects.

• The robot used MV heuristics.



Example 2: Avoidance of fixed 
and moving obstacles (1)

Robot is situated at the center. (𝑡 = 0)



Example 2: Avoidance of fixed 
and moving obstacles (2)

The robot first avoids the small static obstacles



Example 2: Avoidance of fixed 
and moving obstacles (2)

The robot moves to avoid the incoming obstacle 8, but it first slows down and 
accelerates. (𝑡 = 24 𝑠)



Example 2: Avoidance of fixed 
and moving obstacles (3)

The robot becomes tangent to obstacle 8. (𝑡 = 29 𝑠)



Example 2: Avoidance of fixed 
and moving obstacles (4)

Robot accelerates to target. (𝑡 = 29 𝑠)



Example 3a: Moving to an exit 
ramp

• A robotic vehicle is located at the leftmost lane trying to reach 
an exit ramp located on the right.

• There are two moving vehicles that move at constant speeds.
• Vehicle 1 (𝑣𝑥 = 30 m/s, 𝑣𝑦 = 0)

• Vehicle 2 (𝑣𝑥 = 23 m/s, 𝑣𝑦 =)

• Used Global Search and the Heuristic Search (TG and MV)



Example 3a: Moving to an exit 
ramp

• Used a global search (Depth First Iterative Deepening 
Algorithm)

• Nodes of the tree were generated every 1 𝑠

• The RAV sets were discretized, on average, 12 points



Example 3a: Moving to an exit 
ramp

• The total motion time was 3.5 𝑠



Example 3a: Moving to an exit 
ramp

• Used TG heuristics

• Total motion time was 6.07 𝑠

Robot slows 
down.

Robot accelerates 
because at the 

same time instant, 
vehicle 3 is no 

longer a threat.



Example 3a: Moving to an exit 
ramp

• Used MV heuristics

• The total motion time was 3.56 𝑠

The robot 
speeds up.



Example 3a: Moving to an exit 
ramp

• Used a combination of MV and TG

• MV heuristics was the basis for the robot’s movement when 0 ≤
𝑡 ≤ 2.0 𝑠

• TG heuristics was the basis for the robot’s movement 
afterwards

• The total motion time was 5.31 𝑠



Example 3a: Moving to an exit 
ramp

• Used a combination of MV and TG

• The total motion time was 5.31 𝑠
Robot 

speeds up.

Robot slows 
down.

Robot 
speeds up 

again.



Velocity obstacle

Notes

• Selecting a 𝑣𝐴 outside of 𝑉𝑂 would avoid collision, or 
symbolically:

𝐴 𝑡 ∩ 𝐵 𝑡 = ∅ if 𝒗𝑨 ∉ 𝑉𝑂 𝑡

Velocities on the boundaries of 𝑉𝑂 would result in 𝐴 grazing (or 
slightly touching) 𝐵.

• For multiple obstacles, we have
𝑉𝑂 =∪𝑖=1

𝑚 𝑉𝑂𝐵𝑖
where 𝑚 is the number of obstacles.

• We assign priorities to each obstacle and the one with an 
imminent collision will have the greatest precedence.



Example 3b: Negotiating Highway 
Traffic

• We have a “speeding” robot and the other moving objects are 
represented as small circles

• Used MV heuristic method

The robot overtook vehicle 1 and continued to take the same lane.

The robot passes 
vehicle 1 without 

making a complete 
lane change.



Example 3b: Negotiating Highway 
Traffic

• We have a “speeding” robot and the other moving objects are 
represented as big circles

• Used MV heuristic method

Because the moving vehicles were of large sizes, the robot first slowed down to 
attempt a lane change to the left in order to pass vehicle 1. A higher velocity to the 
right became feasible so the robot overtook vehicle 3, passed vehicle 1 on the right 
and returned to the center lane.

The robot slows down 
first and attempt to 
overtake vehicle 1

Because of the 
feasibility to 

accelerate, the robot 
speeds up in front of 

vehicle 3. 



Example 4: Moving towards the 
start of a moving obstacle

• MV heuristics applied
• Robot’s maximum velocity 

is 10 m/s
• Obstacle is moving at a 

speed of 3 m/s



Summary

• A first-order method for planning the motion of a robot in 
dynamic environments was presented.

• Simple geometric representation

• Avoids all kinds of obstacles (static and dynamic)

• Scalable (possible to increase and decrease the number of obstacles)


