SEOUL ARTIFICIAL INTELLIGENCE

seoulai.com

Dynamic Routing Between Capsules.

Geoffrey Hinton et al. (2017)

Dmitriy Khvan

Intro.

- I am...
- Why Capsule Nets?
- Prerequisites
- My goal:

encourage to read the paper
 give intuitive explanation behind the idea
 practice public speaking :) and mac Keynote... :(
 make it fun for everyone!

References.

- ✓ Dynamic Routing Between Capsules G. Hinton et al.
- ✓ Understanding Hinton's Capsule Networks Max Pechyonkin
- ✓ Beginner's Guide to Capsule Networks Zafar (Kaggle)
- ✓ What is wrong with convolutional neural nets? G.Hinton
- ✓ Capsule Networks Tutorial Aurellien Geron

Motivation.

- Need for intuitive approach closely reflecting HVRS
- Reduce data needed for training
- Robustness to affine transformations
- Need for recognition of overlapping objects

CNN.

CNN.

CNN fails to recognize variations of an image.

Max pooling takes highest activations and **forgets where they come from**! By doing this we lose information about spatial relations between different features.

CNNs can be black boxes

Input

Rotate

Too few levels of structure (neuron, layer, nn).

Capsule with 2 instantiation parameters: whether an entity present & entity properties.

• 4 arguments against pooling:

- Does not reflect psychology of shape perception;
- We want equivariance not invariance;
- Ignores underlying linear structure;
- Poor way of **routing**;

"I believe in convolution but I don't believe in pooling. The fact pooling works so well is a disaster." G.Hinton.

Single depth slice 4 2 х 7 5 6 8 3 2 1 0 2 3 1 4 y

max pool with 2x2 filters and stride 2

6	8
3	4

Argument 1: CNN does not reflect psychology of shape perception.

It is a bad fit to the psychology of shape perception: It does not explain why we **assign intrinsic coordinate frames to objects** and why they have such huge effects.

Argument 2: We want equivariance, not invariance.

Translation invariant
Rotation invariant
Scale invariant

Several works aim to introduce rotation, scale invariance to CNNs.

But they **trying to solve wrong problem** (invariance), we want equivariance instead!

Rotational Invariance.

Invariance.

: Mapping independent of transformation, T_g , for all T_g

 $Z = Z_1 = \Phi(X_1) = Z_2 = \Phi(X_2) = \Phi(T_g^1 X_1)$

Equivariance.

: Mapping preserves algebraic structure of transformation

 $Z_1 \neq Z_2$ but keeps the relationship $Z_2 = T_g^2 Z_1 = T_g^2 \Phi(X_1) = \Phi(T_g^1 X_1)$: Invariance is special case of equivariance where T_g^2 is the identity.

Viewpoint Equivariance.

The capsule network is much better than other models at telling that images in top and bottom rows belong to the same classes, only the view angle is different.

Argument 3: Ignores underlying linear structure.

- CNNs try to conquer the variance of the viewpoint by feeding a lot of various images
- A better way to do that is to transform the image into a space in which the manifold is globally linear.
- Hinton proposed a study called "inverse-graphics" in order to reverse the 2D image into the desired space so that we can learn from a small amount of data and manipulate it linearly in that space.

Inverse Rendering.

Human Visual Recognition.

- Tree is composite of crown, trunk and roots;
- crown is composite of leaves and branches;
- HVS recognizes an object (entity) as composition of simpler (more primitive) entities, creating hierarchy of entities.

Q: Does CNN reflect HVS recognition?

Human Visual Recognition. Capsule.

$$\sqrt{1.3^2 + 0.6^2 + 7.4^2 + 6.5^2 + 0.5^2 + 1.4^2} = 10.06$$

Capsule Hierarchy.

Capsule Network.

- Convolution (x 2)
- Reshape feature maps to 32 groups of 8 feature maps each of size 6 by 6 (6x6x32=1152 primary capsules)
- Dynamic Routing
- Digit Caps (higher level capsules of size 16x1)
- Compute Loss
- Backpropagate

Real Estate Agents Analogy.

1152 real estate agents

Dynamic Routing.

$$\mathbf{s}_j = \sum_i c_{ij} \mathbf{\hat{u}}_{j|i} , \qquad \mathbf{\hat{u}}_{j|i} = \mathbf{W}_{ij} \mathbf{u}_i \qquad c_{ij} = rac{\exp(b_{ij})}{\sum_k \exp(b_{ik})}$$

/ 1

\

Procedure 1 Routing algorithm.

- 1: procedure ROUTING($\hat{u}_{j|i}, r, l$)
- 2: for all capsule *i* in layer *l* and capsule *j* in layer (l + 1): $b_{ij} \leftarrow 0$.
- 3: for r iterations do

6:

- 4: for all capsule *i* in layer *l*: $\mathbf{c}_i \leftarrow \texttt{softmax}(\mathbf{b}_i)$ $\triangleright \texttt{softmax}$ computes Eq. 3
- 5: for all capsule j in layer (l+1): $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$
 - for all capsule j in layer (l+1): $\mathbf{s}_j \leftarrow \sum_i c_{ij} \mathbf{u}_{j|i}$ for all capsule j in layer (l+1): $\mathbf{v}_i \leftarrow \mathtt{squash}(\mathbf{s}_i)$ \triangleright squash computes Eq. 1
- 7: for all capsule *i* in layer *l* and capsule *j* in layer (l+1): $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ return \mathbf{v}_j

Squashing Function.

Dynamic Routing.

Procedure 1 Routing algorithm.

- 1: procedure ROUTING($\hat{u}_{j|i}, r, l$)
- 2: for all capsule *i* in layer *l* and capsule *j* in layer (l + 1): $b_{ij} \leftarrow 0$.
- 3: for r iterations do
- 4: for all capsule *i* in layer $l: \mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$

 \triangleright softmax computes Eq. 3

- 5: for all capsule j in layer (l+1): $\mathbf{s}_j \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$
- 6: for all capsule j in layer (l+1): $\mathbf{v}_j \leftarrow \text{squash}(\mathbf{s}_j)$ \triangleright squash computes Eq. 1
- 7: for all capsule *i* in layer *l* and capsule *j* in layer (l + 1): $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ return \mathbf{v}_j

Dynamic Routing.

Training: How many routing iterations to use?

we suggest 3 iteration of routing for all experiments.

Training.

Training.

Loss: Marginal + Reconstruction Marginal loss:

 $L_k = T_k \max(0, m^+ - ||\mathbf{v}_k||)^2 + \lambda (1 - T_k) \max(0, ||\mathbf{v}_k|| - m^-)^2$

total_loss = marginal + 0.0005*recon_loss.

What do individual dimensions of capsule represent?

Scale and thickness	66666666666666666666666666666666666666
Localized part	66666666666
Stroke thickness	55555555555
Localized skew	444444444
Width and translation	1133333333
Localized part	2222222222

Each row shows the reconstruction when one of the 16 dimensions in the DigitCaps representation is tweaked by intervals of 0.05 in the range [-0.25, 0.25].

Segmenting highly overlapping digits.

PROS.

Mathematical Reaches high accuracy in MNIST, promising results for CIFAR10;

Requires less training data

Position and pose information is preserved

Promising for image segmentation and detection

Optimize The second second

Capsule activations nicely map the hierarchy of parts

Arguments against Capsule Networks.

How about more complex data?
 Complexity

O No comparison with other architectures.

Visualization.

https://github.com/bourdakos1/CapsNet-Visualization