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ICML 2018 Highlights ‘

My research interest in machine learning

* Geometric deep learning
* Hyperbolic embedding
* Machine learning on graphs

e Replacing heuristics with learned models
* Replacing heuristic algorithm and data structure with learned models
 |dentifying heuristics in computer architecture and hardware to replace with

ML models.
* Understanding latent spaces of generative models

* Disentangling and factorizing
* Geometry of latent space manifold
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ICML is one of the major ML conferences.

facebook
ICML 2018

5000 registered participants (2300 in 2017, 3200 in 2016, 1600 in 2015)

e

Francis Bach, Opening remarks, ICML 2018
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Trends

Growth

9 - .
33007 submitted
B accepted +45%

20000
wi
c
8
4
E 1500 4
el
-
w
B
E 1000
E
=
2

N . I l I

-
2008 2010 2012 2004 2006

Years

2018

Neural Network Architectures
Reinforcement Learning

Deep Learning (Theory)

Deep Learning (Adversarial)
Optimization (Convex)
Optimization (Non-convex)
Supervised Learning

Online Learning

Generative Models

Statistical Learning Theory
Unsupervised Learning

Transfer and Multi-Task Learning
Other Models and Methods
Privacy, Anonymity, and Security
Clustering

50

L

T
100 150

Number of papers

B submitted
B accepted

T 1

200 250

Francis Bach, Opening remarks, ICML 2018




ICML 2018 Highlights ‘

So many talks!

e Tuesday — 9 tutorials in 3 parallel sessions
 Wednesday to Friday — 10 parallel sessions, 200+ talks each day
* Friday to Sunday — 67 workshops in parallel

* No way to cover them all in this talk!

e Other resources
* David Abel’s highlights (https://david-abel.github.io/blog/posts/misc/icml| 2018.pdf)
* Focus on RL
* Full live streams (https://www.facebook.com/pg/icml.imls/videos)
* All conference videos will be available after about a month.
* | will cover highlighted topics and then focus on topics of my research
interest.



https://david-abel.github.io/blog/posts/misc/icml_2018.pdf
https://www.facebook.com/pg/icml.imls/videos
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Plan

* Highlighted topics
* Security of ML
* Fair ML
e Bayesian Inference
* Theory of Deep Learning

* Interesting topics
 Geometry and Deep Learning
* Replacing Heuristics with Machine Learning
* Understanding Latent Spaces of Generative models

* Other topics



ICML 2018 Highlights A

Plan

 Highlighted topics
* Security of ML
* Fair ML
e Bayesian Inference
* Theory of Deep Learning

* Interesting topics
 Geometry and Deep Learning
* Replacing Heuristics with Machine Learning
* Understanding Latent Spaces of Generative models

* Other topics



Security of ML

* Keynote speech
* Al and Security: Lessons, Challenges and Future Directions, Dawn Song

* Best paper award

* Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses
to Adversarial Examples, Anish Athalye, Nicholas Carlini, David Wagner

e Debate



ICML 2018 Highlights

Keynote, D. Song

Geographical distribution of Miral bots in recent DDoS attack.

Massive DDoS Caused by loT Devices (Mirai Botnet)

+ Over 400,000 compromised loT devices over 160 countries
+ Security cameras/webcams/baby monitors
* Home routers

* One of the biggest DDoS attacks in history
« Over 1Tbps combined attack traffic

Biggest Data Breaches Of the 21st Century

Equifax (2017) | ~
Adult Friend Finder (2016) [N
Anthem (2015) | »
eBay (2014) |
JP Morgan Chase (2014)
Home Depot (2014) §
Yahoo (2013)
Target Stores (2013) |
Adobe (2013) | »
US Office of Personnel Management (2012) |
Sony's Playstation Network (2011) |
RSA Securl ty (2011) | «
Heartland Payment Systems (2008) il
TIX Companies, Inc (2006) |

Power;Outage

+= Caused by Hackers

Ukraine power outage by cyber attack
impacted over 250,000 customers

Attacks Entering New Landscape

attacks in SWIFT banking system

How will (in)security impact
the deployment of Al?

How will the rise of Al
alter the security landscape?

Al and Security: Lessons, Challenges and Future Directions, D. Song, ICML 2018
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Keynote, D. Song

* Vulnerability detection using deep learning
* Chatbot phishing detection
* |oT device vulnerability detection

Al Enables Chatbot for Phishing Detection

Deep learning for vulnerability detection in loT Devices

Firmware . N . “@ "~~~ " "4 i
£ . =) -
— R Files ‘ode Graph | P
K . — Y | TR e ’ Cosine

: I T e Similarity
g : - } Vulnerability !
- A A » ; = : ode Graph

& S Function b
-1 (6] an

Chatl')ot'for booklng ﬂlghts' Chatbot for social engi.neermg attack Neural Network-based Graph Embedding for Cross-Platform Binary Code Search
finding restaurants detection & defense [XLFSSY, ACM Computer and Communication Symposium 2017]

Al and Security: Lessons, Challenges and Future Directions, D. Song, ICML 2018
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Keynote, D. Song

* Machine learning in the presence of attackers
» Adversarial examples / data poisoning

| f

Clean Stop Sign

nl)
|] |] “Stop sign”
]

Real-world Stop Sign
in Berkeley

“Stop sign”

Adversarial Example

“Speed limit sign 45km/h”

Adversarial Example

“Speed limit sign 45km/h”

Al and Security: Lessons, Challenges and Future Directions, D. Song, ICML 2018

* Protecting Privacy (“Data is the new oil.”)
* Does neural network remember the training data?
 If yes, can an attacker extract it by querying the model?

* No sufficient defense today

12
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Best paper award, N. Carlini

* Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples, Anish Athalye,
Nicholas Carlini, David Wagner

* Among 13 defense papers at ICLR 2018,
* 9 are white-box, non-certified.
* 6 of them are broken, 1 of them is partially broken.

* The threat model must assume the attacker has read the paper
and knows the defender is using those techniques to defend.

 Learn to break defenses before trying to build them.

* |f you cannot break the state-of-the-art, you are unlikely to be able to
build on it.

13
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Debate

* Proposition: "The vulnerabilities of present machine learning systems
are so critical that we should not allow their general deployment in
real-world settings.”

* Aleksander Madry (Affirmative)
e Alhussein Fawzi (Affirmative)

* Percy Liang (Negative)

e Aditi Raghunathan (Negative)

 Whether to put resources in advancing the ML frontier vs. in securing
the ML tech as early as possible.

14
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Fair ML

Two groups with different score distributions (e.g. credit scores) Approve loans according to DEMOGRAPHIC PARITY. Credit scores change with repayment (+) or default (-).
BLUE GROUP RANGE GROUP T i I o6
T 099 IS Serease eoe
S S eeey
Crt 9088888 9oe8e8e88e | ®®®g§§333 SSegeesese o S8 o588 3338
l SO0 0000000 T Heee0Te00 l ® o0 l S0 00000 Scee®
' Scores é " Scores : Scores ' , Scores ‘ / Scores Scores
@ Would repay ‘ Would repay Scores got worse on average @ Would repay
© Would not repay @ Would not repay @ Would not repay

Delayed Impact of Fair Machine Learning, Lydia Liu et al., ICML 2018

* Best paper award

* Delayed Impact of Fair Machine Learning, Lydia Liu, Sarah Dean, Esther Rolf,
Max Simchowitz, Moritz Hardt
* Fairness does not help protected groups and may actually harm them.

* Workshop

* Fairness, Accountability, and Transparency in Machine Learning

15
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Bayesian Inference

 Tutorial
* Vlariational Bayes and Beyond: Bayesian Inference for Big Data, T. Broderick

* Keynote
* Intelligence per Kilowatthour, M. Welling.

* (Conditional) Neural Process

16
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Tutorial, T. Broderick

* Bayesian inference still going strong these days.

Bayesian inference

« Analysis goals: Point estimates, coherent uncertainties
 Interpretable, complex, modular; expert information

0.020

0.015 [Gillon et al 2017] |
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Variational Bayes and Beyond: Bayesian Inference for Big Data, T. Broderick, ICML 2018 17
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Tutorial, T. Broderick

* Slow for modern problems: large data, Gaussian model (simulated)

Iarge dimensions * 10K pts; norms, inference: closed-form
» Approximate Bayesian inference Ukiform f ;\) \
L. L subsampling | o7 y
» Variational Bayesian inference \
* Mean-field variational Bayes
Yy Importance m |
* Preprocess data to build Bayesian sampling \'U
coreset

. 2\
* a smaller, weighted dataset Frank-Wolfe Q </> (
5374

M =50 M = 500

Variational Bayes and Beyond: Bayesian Inference

for Big Data, T. Broderick, ICML 2018
18
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Keynote, M. Welhng

The Al power and thermal ceilin
Deep neural networks P &
a re e n e rgy h u n g ry a n d ® 2017 Extremely large neural
. networks (N=1378) Constrained
growing fast i . mobile environment
§ 2013: Google/Y!
-1 (N=+/-18) ¥’ N
5 Al is being pOWEfEd by the explosive B e il Desei Very compute intensive D »'x\ i Must be thermally efficient
& . growth of deep neural networks Belief Net (+/- N+10M) o W for sleek, ultra-light designs
g Complex concurrencies ‘:’@L’"
S & Requires long battery
= ) g g etTal rt J‘ §
10 1l~l/“r« NI(;:.)II( Real-time (%3 D life for all-day use
- %, Storage/memory
o - Always-on =+ bandwidth limitations
M0 195  1%0 19720 190 199 2000 2000 2020 '

Intelligence per Kilowatthour, M. Welling, ICML 2018

“Value created by Al must exceed the cost to run the service.”

* For energy efficient deep learning, use Bayesian deep learning for
model compression.

* Use posterior distribution of parameters after data.
* Variational dropout posterior results in sparse models.

19
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Neural process

e Conditional Neural Processes, Marta Garnelo et al.

e Learn distribution of functions.

* Trade-off between Gaussian process and conditional neural process

¢ Learn function
approximation from data
directly

¢ Can model complex
functions with few

functional restrictions

* Fast evaluation at test time

Regression algorithms

Neural Gaussian Neural
Networks Processes Processes
: i
AN A N

| ¢ Learn distribution over
: functions > Flexible at
test time

e Have a measure of
uncertainty given
observations at test-
time

Random Context Ordered Context
# 10 100 1000 \ 10 100 1000
KNN | 0.215 0.052 0.007 | 0.370 0.273 0.007

GP | 0.247 0.137 0.001 | 0.257 0.220 0.002
CNP | 0.039 0.016 0.009 | 0.057 0.047 0.021

Table 1. Pixel-wise mean squared error for all of the pixels in the
image completion task on the CelebA data set with increasing
number of context points (10, 100, 1000). The context points are
chosen either at random or ordered from the top-left corner to the
bottom-right. With fewer context points CNPs outperform kNNs
and GPs. In addition CNPs perform well regardless of the order of
the context points, whereas GPs and kNNs perform worse when
the context is ordered.

20



Theory of Deep Learning

* Conference

* Understanding the Loss Surface of Neural Networks for Binary Classification,
Shiyu Liang, Ruoyu Sun, Yixuan Li, Rayadurgam Srikant.

* Tropical Geometry of Deep Neural Networks, Liwen Zhang, Gregory Naitzat,
Lek-Heng Lim.

* Tutorial
* Toward Theoretical Understanding of Deep Learning, S. Arora.

21



Mathematical models

* Understanding the Loss Surface of Neural Networks for Binary
Classification, Shiyu Liang, Ruoyu Sun, Yixuan Li, Rayadurgam Srikant.
* Focus on the training of neural networks for binary classification.

* Provide conditions under which the training error is zero at all local minima.
* the activation function have to be increasing and strictly convex,

* the neural network should either be single-layered or is multi-layered with a shortcut-
like connection,

* and the loss function should be a smooth version of hinge loss.

* Tropical Geometry of Deep Neural Networks, Liwen Zhang, Gregory
Naitzat, Lek-Heng Lim.

 |dentify a connection between a class of neural networks and tropical
algebraic geometry.

* The family of feedforward neural networks with ReLU activation are
equivalent to the family of tropical rational maps. )
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Tutorial, S. Arora.

Optimization
« 2" order optimization does not find

better quality model.

Overparameterization
* No meaningful estimation of the

capacity of deep models.

Generalization
* Hard to make quantitative statement

about flat minima.

Role of depth
* Currently not within reach of theory.

GAN

» Efforts to understand mode collapse

problem theoretically.

Most of the studies are post-mortem.

Talk overview

$’\

Training error

Ei [6(93 L, y%)]
Test error
E(a:,y)GD[g(Ha €T, y)]

/3

Optimization: When/how can it find
decent solutions? Highly nonconvex.

Overparametrization/Generalization:
# parameters > training samples.
Does it help? Why do nets generalize
(predict well on unseen data)?

Role of depth?
Unsupervised learning/GANs
Simpler methods to replace deep

learning? (Examples of Linearization
from NLP, RL...)

Toward Theoretical Understanding of Deep Learning, S. Arora, ICML 2018
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Tutorial, S. Arora.

Food for thought...

Maximizing log likelihood (presumably approximately)
may lead to little usable insight into the data.

How to define utility of GANs (if not as distribution learners)?
Need to define unsupervised learning using a

“utility” approach (What downstream tasks are we interested in
and what info do they need about X?)

(Similar musings on INFERENCE blog, April’18.
e.g., What would a “representation learning competition” look like?)

What to work on (suggestions for theorists)

1. Use Physics/PDE insights, such as calculus of

“The revolution
will not be
supervised.”

variations (Lagrangians, Hamiltonians, etc.)

2. Look at unsupervised learning (Yes, everything
is NP-hard and new but that’s how theory grows.

3. Theory for Deep Reinforcement learning.
(Currently very little.)

4. Going beyond 3), design interesting models for
interactive learning (of language, skills, etc.). Both
theory and applied work here seems to be
missing some basic idea. (Theory focuses on
simple settings like linear classifiers/clustering.)

Toward Theoretical Understanding of Deep Learning, S. Arora, ICML 2018

24
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Physicists @ ICML

* Physicists in the wild grazing
on the grass... or just having
a lunch together.

25
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Plan

* Highlighted topics
* Security of ML
* Fair ML
e Bayesian Inference
* Theory of Deep Learning

* Interesting topics
 Geometry and Deep Learning
* Replacing Heuristics with Machine Learning
* Understanding Latent Spaces of Generative models

* Other topics

26
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Geometry and Deep Learning

* Geometric deep learning

* “An umbrella term for emerging techniques attempting to generalize (structured)
deep neural models to non-Euclidean domains such as graphs and manifold.”

* From Geometric deep learning: going beyond Euclidean data, M. Bronstein et al., IEEE Signal
Processing Magazine ( Volume: 34, Issue: 4, July 2017 )

* Examples
e Social networks
e Sensor networks
* Functional networks in brain imaging
* Regulatory networks in genetics
* Meshed surfaces in computer graphics.
e Hyperbolic embedding
* Learning continuous hierarchy
e Hyperbolic entailment cone

* Equivariance in deep learning

27
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Hyperbolic embedding

e Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic
Geometry, Maximillian Nickel, Douwe Kiela.
* Poincare model for visualization
* Lorentz model for Riemannian optimization

S D

(a) Geodesics in the Poincaré disk. (b) Lorentz model of hyperbolic geometry. 28
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Hyperbolic embedding

* Hyperbolic Entailment Cones for Learning Hierarchical Embeddings,
Octavian-Eugen Ganea, Gary Becigneul, Thomas Hofmann.

 Embed directed acyclic graphs (DAGs) using nested Riemannian
convex cones.

 Mathematically defined entailment cones in a closed form.

29
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Deep learning on graphs

» Stochastic Training of Graph Convolutional Networks with Variance
Reduction, Jianfei Chen et al.
* Problem of GCN: large receptive field, recursive neighbors.
* Use history rather than sampling.

* Representation Learning on Graphs with Jumping Knowledge
Networks, Keyulu Xu et al.

* For GCN using neighborhood aggregation (or message passing), 2-layer is
best, the deeper the worse.

* Theorem: k-layer GCN is equivalent to k-step random walk.
e Suggests JK-net based on the observation.

30
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Deep learning on graphs

* NetGAN: Generating Graphs via Random Walks, A. Bojchevski, O.
Shchur et al.
* Generative model for graphs that captures properties of real-world graph.
* Learn implicit model of random walk distribution on graphs using GAN.
 Random walk is a Markov process and therefore has no memory. Why more
than 2 steps? For Generalization!

 GraphRNN: Generating Realistic Graphs with Deep Auto-regressive
Models, Jiaxuan You et al.

* Generating realistic graph by modeling graphs as sequences and learning the
probability distribution of graphs.

31
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Equivariance in DL models

e Towards learning with limited labels: Equivariance, Invariance, and
Beyond, Workshop @ ICML 2018

* Equivariance : (ID(Tgx) = Ty ®(x) for g € G, where x is an input, ® is a non-
linear function represented by a deep network, and G is the symmetry group
of the input space.

* Leads to the consideration of fiber bundle (G-bundle).

* Imposing invariance too soon results in loosing information and requiring
learning many kernels that are transformation of each other.

* The General Theory of Equivariant Convolutional Networks, Taco Cohen.

* Capsule networks and transformation extrapolation for learning from limited
data, Nicholas Frosst.

32



Replacing Heuristics with ML SW & HW

* Replacing heuristic algorithm and data structure with learned models
* Domain specific architecture

* RL-based memory controller

* Learning memory access pattern

* Imitation learning

33
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Replacing heuristic algorithm with ML models

* Device Placement Optimization with Reinforcement Learning, Azalia
Mirhoseini and Hieu Pham et al., ICML 2017
* Learn to optimize device placement for TF computation graphs.

* RL-based placement of Inception-v3 achieves the improvement of 19.7% in running
time compared to expert-designed placement.

Placemen t — 3] Environmen

t

Runtime

; Update

Placement

-

Softmax

Attention

Hidden
state

. Ity
Embedding | e | fape [ 2

I I I\
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M H/ H/ e
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Replacing heuristic data structure with ML models

* The Case for Learned Index Structures, T. Kraska et al., arXiv:1712.01208

A B-Tree-Index can be seen as a model to map a key to the position of a record
within a sorted array.

* Index structures can be replaced with deep-learning models.

* Learned index structures using neural nets outperform cache-optimized B-Trees by

up to 70% in speed while saving an order-of-magnitude in memory over several real-
world data sets.

(a) B-Tree Index (b) Learned Index

Key Key
\/

Model
BTree g, M
pos p&

pos -0 pos + pagezise pos - min_err pos + max_er
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Fireside chat with Jeff Dean at Google

e Systems and Machine Learning Symbiosis, Jeff Dean, June 26 @ Google
Campus Seoul

* Q1: In addition to replacing algorithmic index data structures like B-Tree with
machine learning models. | wonder if there has been additional research efforts
regarding replacing other data structures based on heuristics with learned models.

 Al: There are many heuristics in modern computer systems, for example cache
policies, and replacing these with ML/RL will be interesting.

 Q2: TPU is a great example of an ASIC specialized for the acceleration of training and
inference of DL models. What other ASICs can we expect to replace and accelerate
current algorithm-based data structures with machine learning models?

* A2: It is important for the development of an ASIC to hit the sweet spot of
specialization and wide applicability, and for now accelerating linear algebra
operations seems to be the most appropriate one, albeit it may take a form of low-
power edge device instead of TPUs at datacenters.

36
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Domain specific architecture

* John Hennessy, ACM A.M. Turing Award Lecture @ ISCA 2018

e Performance improvements are at a standstill.
* Lots of opportunities, but new approach to computer architecture is needed.

Domain Specific Architectures (DSAs)

+ Achieve higher efficiency by tailoring the architecture to
characteristics of the domain
* Not one application, but a domain of applications
-Different from strict ASIC

» Requires more domain-specific knowledge then general purpose
processors need

* Examples:

» Neural network processors for machine learning
» GPUs for graphics, virtual reality
+ Programmable network switches and interfaces

TPU: High-level Chip Architecture

Perf/Watt TPU vs CPU & GPU

= The Matrix Unit: 65,536 (256x256) 8-bit multiply-  —

= Two 2133MHz DDR3 DRAM channels
= 8 GiB of off-chip weight DRAM memory

accumulate units
= 700 MHz clock rate s
= Peak: 92T operations/second & s
- 65536 *2* 700M i |y
UGBS ] A\ s | E
» >25X as many MACs vs GPU SRS | S
T U
= >100X as many MACs vs CPU £
= 4 MiB of on-chip Accumulator memory
= 24 MiB of on-chip Unified Buffer (activation -
memory) [moioym
= 3.5X as much on-chip memory vs GPU 5:"'"‘

M GPU/CPU B TPU/CPU TPU/GPU
Measure performance of

Machine Learning?

100

See MLPerf.org (“SPEC for ML”")
e Benchmark suite being
developed by
o 27 companies and

25 2 25 universities
o To be released 7/1/18
21 16 ‘A
0 .

Total Incremental
Performance/Watt Performance/Watt
(including host CPU) (no host CPU)
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RL-based memory controller

e Self-Optimizing Memory Controllers: A Reinforcement Learning
Approach, E. Ipek et al., ISCA 2008.
* Propose to design the memory controller as an RL agent to learn an optimal
memory scheduling policy for chip multiprocessors (CMP).

 Compared to fixed access scheduling policies (i.e. FR-FCFS), RL-based
controller improves

* the performance of a set of parallel applications by 19% on average (up to 33%),
* and DRAM bandwidth utilization by 22% on average.
1.70
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< §‘\ (_3,‘?“
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RL-based memory controller

* Use Q-learning to train an RL-based memory controller.

* Allow HW designer to focus on
* what performance target to accomplish
e and what system variables might be useful

* rather than devising a fixed policy that describes exactly how the controller
should accomplish the target.

ENVIRONMENT

/ State \ ACtIO
. < Reward r(t 3
Action a(t+1) _ St;':e S(I)( ) Transaction Queue
lﬂﬁﬁa"
SYSTEM =

- ~
J - } -
~
~
. Request
<— Data Bus Utilization (t Valid | Bank | Row | Col |Data | "go Reward
Scheduled Command (t+1) State Attributes ()

DRAM
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RL-based memory controller

* How self-optimizing memory controller fits into RL framework:

 State: six attributes selected via feature engineering.

* # of reads, writes, load misses in the transaction queue, the criticality of each request,
whether a given request would hit in the row buffer if serviced next, total # of reads and
writes pending for each row and bank.

* Action: legal DRAM commands — precharge, activate, read, write.

 Reward: utilization of the data bus.
e 1 forissuing a command of read or write, O for others.

N\

e

DRAM

/ State \

ENVIRONMENT
Transaction Queue
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DL-based memory prefetcher

e Learning Memory Access Patterns, Milad Hashemi et al.

* Relate prefetching strategies to N-gram models in NLP.
* Use RNNs to replace prefetchers based on prediction and heuristics.

 Effectiveness of sequential learning algorithms in microarchitecture designs is
still an open problem.
* One of the authors says he got more questions than answers from this work.
* Only simulation results, does not evaluate the HW design of the models.
 Evaluates the precision and recall of cache hits/misses.
* Unclear if DNNs can meet the latency demands.
* Train-offline test-online model.

 Shift the problem of prefetching from a memory capacity problem to a
compute problem.

41
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DL-based memory prefetcher

* Two input features are:
* the sequence of cache miss addresses,

e and the sequence of instruction addresses (program counters or PCs)
e Can inform the model of patterns in the control flow.

* Address space extremely sparse, predict deltas instead.
e AN — Addl”N_H — AddI‘N
* # of deltas is often orders of magnitude smaller.
* Also works with address space layout randomization (ASLR)

Table I. Program trace dataset statistics. M stands for million.
Dataset # Misses #PC | # Addrs | # Deltas | # Addrs 50% mass | # Deltas 50% mass

Lo gems 500M 3278 | 13.11M 2.4TM 4.28M 18

L. 2 e e Bt astar 500M 211 0.53M L.7TM 0.06M 15
_ 1.2 bwaves 491M 893 | 14.20M 3.6TM 3.03M 2
210 Ibm 500M 55 6.60M 709 3.06M 9
~ leslie3d 500M 2554 1.23M 0.03M 0.23M 15
0.8 libquantum 470M 46 | 0.52M 30 0.26M 1
g 0.6 mcf 500M 174 | 27.41M | 30.82M 0.07M 0.09M
z 0.4 milc 500M 898 3.74M 9.68M 0.87M 46
’ ke omnetpp 449M 976 0.71M 5.01M 0.12M 4613
0.2 L soplex 500M 1218 3.49M 5.27TM 1.04M 10
00 [ b sphinx 283M | 693 | 021M | 0.37M 0.03M 3

0.0 0.2 04 06 0.8 1.0 websearch S500M | 54600 | 77.76M | 96.41M 0.33M 5186 42
Miss Number [10° ]
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DL-based memory prefetcher

 Two models: embedding LSTM and clustering + LSTM

Cache
(B [ R0z [ o | [ Bwor | _ Cache _
b "—“13 I "323 ‘333
g
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( ) )
M 1 Ted_ | LSTM 2 _Tied_
weights weights
Cluster ID
Aqp Bo1 Lop
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S12 B9 | &
FCq FC, | PC

Address
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43




ICML 2018 Highlights

DL-based memory prefetcher

* The stream prefetcher achieves a high recall.

* LSTM models dominates in terms of precision.

* Especially on Google’s websearch workload dataset, added in addition to SPEC
CPU2006 datasets.
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ICML 2018 Highlights ﬂ

Other ML in microarchitecture

* Dynamic branch prediction with perceptrons, D. Jimenez and C. Lin,
HPCA, 2001.

* Long short term based memory hardware prefetcher, Yuan Zeng,
MEMSYS 2017.

* Reinforcement Learning-Assisted Garbage Collection to Mitigate
Long-Tail Latency in SSD, Wonkyung Kang, Dongkun Shin, and Sungjoo
Yoo, ACM 2017.
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ICML 2018 Highlights ﬂ

Imitation learning

* |s a powerful and practical alternative to reinforcement learning for
learning sequential decision-making policies.

* Reinforcement learning — learning policy without expert.

* Also known as learning from demonstrations or apprenticeship
learning.

* What if we consider a heuristic as a suboptimal expert and train a
policy that outperforms the expert?
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ICML 2018 Highlights

Imitation learning

Types of Imitation Learning

Behavioral Cloning Direct Policy Learning

_ via Interactive Demonstrator
argmine E(s,a*~p*L(@*,me(S))

Works well when P* close to Pe Collect
Demonstrations ﬂ

Inverse RL ﬂ

Learn r such that:

—

RL problem

Learning
T* = argmaxe ES"‘P(S|9)r(S’nB(S)) Rollout in
Environment

<

Assumes learning r is statistically Requires Interactive Demonstrator
easier than directly learning m* (BC is 1-step special case)

Imitation Learning, Y. Yue and H. M. Le, ICML 2018
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ICML 2018 Highlights

Imitation learning

* Behavioral cloning
e Supervised learning
* Limitation: expert makes no mistake!

* Direct policy learning via interactive expert
* Generalization of BC
* Can query expert any time
* Data aggregation and policy aggregation
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ICML 2018 Highlights ‘

Imitation learning

Direct Policy Learning via Interactive Expert

Reduction to sequence of supervised learning problems
o Constructed from roll-outs of previous policies
o Requires interactive expert feedback

Two approaches: Data Aggregation & Policy Aggregation

e Ensures convergence

o Motivated by different theory Demonsrsions |-=1
Not covered: Depends on application ﬂ ey
o What is expert feedback & loss function? evroament | o))

Imitation Learning, Y. Yue and H. M. Le, ICML 2018 49



ICML 2018 Highlights

Imitation learning

* Challenges in RL with reward engineering = Inverse RL

m Inverse RL high-level recipe: TE or "

d

e Expert demonstrations: D= {Tla ceey Tm}
ro(s,a) = 0" ¢(s,a)

e Learn reward function: rg(8¢, at)/

e Learn policy given reward function (RL)

e Compare learned policy with expert

Imitation Learning, Y. Yue and H. M. Le, ICML 2018 o



ICML 2018 Highlights

Imitation learning

* Generative Adversarial Imitation Learning

Find saddle point (7, D) Ho & Ermon, NIPS 16

H;in DE(I(I)I,?)}%XA Ex [log(D(s,a))] + Er- [log(1 — D(s, a'))] — AH (m)

)
0 D tries to D tries to ®
P ’\\,\ output O output 1 /_q\\
0 - 00 : ::» 66 09
0O | Differentiable Differentiable @® --- 00
function D function D

Q0 -+ 00

Sample from Sample from
expert model

e

=
! 1

I Black box I

I simulator 1

Generator ! |
¢ 1 I

I | Differentiable | 1

! function |

! 1

1 1

Generator Update

A

E._[Vologmg(als)Q(s,a)] — AVgH (mp)

|

Imitation Learning, Y. Yue and H. M. Le, ICML 2018
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ICML 2018 Highlights ‘

Understanding latent spaces of generative models

* Conference
* Semi-Supervised Learning via Compact Latent Space Clustering
* Learning Independent Causal Mechanisms
e Disentangling by Factorising

* Workshop

e Towards learning with limited labels: Equivariance, Invariance, and Beyond
* Theoretical Foundations and Applications of Deep Generative Models
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ICML 2018 Highlights ﬂ

Graph, latent space, and clustering

* Semi-Supervised Learning via Compact Latent Space Clustering,
Konstantinos Kamnitsas et al.

Samples in latent space ~ Dynamically create  Capture structure via LP, Compact clustering
¢ M Et h O d A graph per iteration minimize CCLP cost facilitates separation

Zl -~ V7
B s B
» } » ,//
Y ’,"
< ,”

PP U U U S P p——

1. Dynamically construct a
graph in the latent space,

2. Propagate labels to capture
the manifold’s structure,

3. And regularize it to form a S R ' is suboptimal !
single, compact cluster per = Network 9 >®P(y = 2;2,6,,6,) | | 00990 !

< Z(x’ Z) P(y—‘3"a: 0 9) : .O ! :

class. c %) |00 [ @0 ||

© : {009 |

- [ OOII'OO |

53



ICML 2018 Highlights ‘

Disentangling latent space

* Learning Independent Causal Mechanisms, Giambattista Parascandolo

et al.

* At training time, an expert transforms a data back to a canonical one.

e Unsupervised and modular (many experts)
* A discriminator judges experts
* Training parallelized across experts

sl transformed
i

example

Experts é> %

5

canonical
MNIST

7

—

0.0

Discriminator

I

0.1 0.5

¢ ¢
[l
§ s
I

[
argmax
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ICML 2018 Highlights ‘

Disentangling latent space

* Disentangling by Factorising, Hyunjik Kim and Andriy Mnih.

» Suggests an objective that directly encourages a factorial latent
distribution g(z) = II; q(z;) and introduce FactorVAE.

* Comparison to B-VAE and InfoGAN, which are popular generative models for
disentangling latent space.

» Towards disentangling underlying explanatory factors, Yoshua Bengio

* Towards learning with limited labels: Equivariance, Invariance, and Beyond,
ICML 2018 Workshop

* |f the latent space of a generative model is factorized, linear interpolation in
the latent space generates good images all along.
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ICML 2018 Highlights ‘

Theoretical Foundations and Applications of Deep
Generative Models

e Capturing Dependencies Implicitly, Yoshua Bengio.

* Instead of MLE loss in the pixel space, which greatly penalize for not putting a
probability distribution on a single data point, we need a loss in the latent space.

* Interpretable and Semantics-aware Generative Models, Pushmeet Kohli.
* Replacing the decoder of an autoencoder with graphics engines for interpretability.

* Editing is Easier than Generation, Percy Liang.
e Learning local transformations represented by matrix Lie group from unlabeled data.
e Text generation not from scratch but using transformations.
* Learning hierarchical generative models with structured representations,
Honglak Lee.
* Hierarchical text-to-image synthesis, text - box - mask - pixel.
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ICML 2018 Highlights

Plan

* Highlighted topics
* Security of ML
* Fair ML
e Bayesian Inference
* Theory of Deep Learning

* Interesting topics
 Geometry and Deep Learning
* Replacing Heuristics with Machine Learning
* Understanding Latent Spaces of Generative models

* Other topics
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ICML 2018 Highlights

Other topics

* Hierarchical learning

* World model
* Building Machines that Learn and Think Like People, J. Tenenbaum, ICML 2018
Keynote speech.

e AutoML workshop

* Automating machine learning, Zoubin Ghahramani.
* https://www.automaticstatistician.com
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Thank youl!

. , @ machine learning research group at KC, is looking for:
* ML research scientist
* ML research engineer
* Contact me by chan.y.park@kct.co.kr

1
. ‘k, a start-up for product personalization, is looking for:
* Data scientist
* Data engineer
* Or the two in one person. ©
 Reach me by chan@morulabs.com

e https://www.linkedin.com/in/chan-youn-park/
* Any question or collaboration is always welcome!
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