Linear Regression (2)

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Seoul Al Meetup

Martin Kersner, 2017/11/11

Springer Series in Statistics **Trevor Hastie Robert Tibshirani Jerome Friedman** The Elements of **Statistical Learning** Data Mining, Inference, and Prediction Description Springer

http://www-bcf.usc.edu/~gareth/ISL/

https://web.stanford.edu/~hastie/ElemStatLearn/

7,301 responses

https://www.kaggle.com/surveys/2017

Linear Regression Methods

Introduction

Ordinary Least Squares Regression

Basic methods

Polynomial Regression

Locally Weighted Linear Regression

Shrinkage methods

Ridge Regression

Lasso

Forward Stagewise Regression

Others

TensorFlow Lattice

Ordinary Least Squares

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$$
$$m > n$$

http://seoulai.com/presentations/Linear_Regression_1.pdf

Locally Weighted Linear Regression

Locally Weighted Linear Regression

Linear regression usually underfits data.

Not all data points are relevant for prediction.

Give more weight (W) to data points near data point of interest.

Drawback: Uses full dataset each time a prediction is needed!

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{y}$$

Locally Weighted Linear Regression

Closer data points to data point of interest will have larger influence on prediction than farther ones.

Distance between data points measured by Gaussian function*.

$$w_{i,i} = \exp \frac{(x_i - x)^2}{-2k^2} \quad \ \ \text{Point of interest}$$

k hyperparameter

Defines how much to weigh nearby points.

When **k** is higher further data points will have influence on prediction.

* <u>https://en.wikipedia.org/wiki/Gaussian_function</u>

Locally Weighted Linear Regression $oldsymbol{X}^ op oldsymbol{W}oldsymbol{X}$

Computation of $oldsymbol{X}^ op oldsymbol{W}oldsymbol{y}$ is based on the same principle.

Locally Weighted Linear Regression Gauss

Polynomial

Expression that can be built from **constants** and **indeterminates** by means of addition, multiplication and **exponentiation to non-negative integer power**.*

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

Term

Degree of indeterminate = The exponent of indeterminate.Degree of term = The sum of degrees of indeterminates.Degree of polynomial = The highest degree of terms.

Constant, Linear, Quadratic, Cubic, ...

* https://en.wikipedia.org/wiki/Polynomial#Definition

Special case of <u>Multiple</u> Linear Regression.

Relationship between the <u>independent</u> variable X and the <u>dependent</u> variable y is modelled as an *n*th degree polynomial in X.*

Enables us to fit a <u>nonlinear</u> model to the data, but as a statistical estimation problem it is <u>linear</u>.

$$\boldsymbol{X} \in R^{m,n} \to \phi(\boldsymbol{X}) \in R^{m,d_{\phi}}$$
$$\hat{\boldsymbol{\beta}} = (\boldsymbol{\phi}(\boldsymbol{X})^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{X}))^{-1} \boldsymbol{\phi}(\boldsymbol{X})^{\mathsf{T}} \boldsymbol{y}$$

Example

Add terms with degrees greater than one to the model.

$$\begin{array}{c} a \xrightarrow{\phi_2} a, a^2 \\ a \xrightarrow{\phi_3} a, a^2, a^3 \\ a, b \xrightarrow{\phi_2} a, b, a^2, b^2, ab \\ a, b \xrightarrow{\phi_3} a, b, a^2, b^2, ab, a^2b, ab^2, a^3, b^3 \end{array}$$

It is unusual to use degree greater than 3 or 4.

Independent variable are not assumed to be random, but <u>fixed</u>, therefore we can transform them in arbitrary ways.

Basis functions

A fixed set of nonlinear functions that are used to transform the value(s) of a data point(s).

Other basis functions such as splines, radial basis functions, and wavelets can be utilized.

Underfitting & Overfitting

Quantitative vs Qualitative Features

Quantitative Features

Two levels

$$x_i = \begin{cases} 1 & \text{if condition is True} \\ 0 & \text{if condition is False} \end{cases}$$

Three levels

 $x_1 i = \begin{cases} 1 & \text{if condition1 is True} \\ 0 & \text{if condition1 is False} \end{cases}$

 $x_2 i = \begin{cases} 1 & \text{if condition2 is True} \\ 0 & \text{if condition2 is False} \end{cases}$

name	female
Martin	0
Yoonju	1

name	American	Korean
Raj	1	0
Yoonju	0	1
Martin	0	0

Summary

Models are all linear from the point of view of estimation.

Fit a nonlinear relationship.

Both can be fit using Ordinary Least Squares.

References

Polynomial Regression <u>https://en.wikipedia.org/wiki/Polynomial</u> <u>https://en.wikipedia.org/wiki/Polynomial_regression</u>