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People can learn fast. They don't need
many examples to learn from in order to
distinguish between different objects.

WHY?
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Eastern Bluebird, Superb fairywren, Mountain Bluebird



It Is estimated that a child has learned
almost all of the 10-30 thousand object
categories in the world by the age of six.

Irving Biederman: Recognition-by-Components: a theory of human understanding


https://pdfs.semanticscholar.org/1e38/9040dbdb3057ff510df13808be153c459fd0.pdf
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Few-shot learning

The key motivation for the few-shot learning technique is
that systems, like humans, can use prior knowledge
about object categories to classify new objects.
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https://blog.openai.com/reptile/


https://blog.openai.com/reptile/

Few-shot meta-learning

The goal of few-shot meta-learning is to train a model
that can quickly adapt to a new task using only a few
data points and training iterations.

This kind of fast and flexible learning is challenging, since
the learner must integrate its prior experience with a
small amount of new information, while avoiding
overfitting to the new data.
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Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
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Abstract

We propose an algorithm for meta-learning that
is model-agnostic, in the sense that it is com-
patible with any model trained with gradient de-
scent and applicable to a variety of different
learning problems, including classification, re-
gression, and reinforcement learning. The goal
of meta-learning is to train a model on a vari-
ety of learning tasks, such that it can solve new
learning tasks using only a small number of train-
ing samples. In our approach, the parameters of
the model are explicitly trained such that a small
number of gradient steps with a small amount
of training data from a new task will produce
good generalization performance on that task. In
effect, our method trains the model to be easy
to fine-tune. We demonstrate that this approach
leads to state-of-the-art performance on two few-
shot image classification benchmarks, produces
good results on few-shot regression, and acceler-
ates fine-tuning for policy gradient reinforcement
learning with neural network policies.

1. Introduction

the form of computation required to complete the task.

In this work, we propose a meta-learning algorithm that
is general and model-agnostic, in the sense that it can be
directly applied to any learning problem and model that
is trained with a gradient descent procedure. Our focus
1s on deep neural network models, but we illustrate how
our approach can easily handle different architectures and
different problem settings, including classification, regres-
sion, and policy gradient reinforcement learning, with min-
imal modification. In meta-learning, the goal of the trained
model is to quickly learn a new task from a small amount
of new data, and the model is trained by the meta-learner
to be able to learn on a large number of different tasks.
The key idea underlying our method is to train the model’s
initial parameters such that the model has maximal perfor-
mance on a new task after the parameters have been up-
dated through one or more gradient steps computed with
a small amount of data from that new task. Unlike prior
meta-learning methods that learn an update function or
learning rule (Schmidhuber, 1987; Bengio et al., 1992;
Andrychowicz et al., 2016; Ravi & Larochelle, 2017), our
algorithm does not expand the number of learned param-
eters nor place constraints on the model architecture (e.g.
by requiring a recurrent model (Santoro et al., 2016) or a

Siamese network (Koch, 2015)), and it can be readily com-
hined with fiillv connected convalinitional or rectirrent neti-



Model-Agnostic Meta-Learning

any learning problem that is trained with a gradient descent
Nno constraints on the model architecture

variety of loss functions

does not expand the number of learned parameters

train model's initial parameters

easy to fine-tune



Feature learning standpoint

If the internal representation is suitable to many tasks,
simply fine-tuning the parameters slightly can produce

good results.

Fine-tuning from pretrained models is standard
technique to achieve good results fast.



Dynamical system standpoint

Maximizing the sensitivity of the loss functions of new
tasks with respect to the parameters.

When the sensitivity is high, small local changes to the

parameters can lead to large improvements in the task
loss.



Problem setup

Train model 7, that maps observations x to outputs a.
T — {["’(Xla al, ..., XH, a‘H)? Q(X1)7 Q(XH—l ‘Xta at)a H}

Loss function L

Distribution over initial observations g(x;)
Transition distribution g(X¢+1/X:, at)
Episode length H



Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(7): distribution over tasks
Require: o, (3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(7T)

4. forall 7; do

5: Sample K datapoints D = {x9), y")} from T;

6: Evaluate Vo L7, (fo) using D and L7; in Equation (2)
or (3)

7: Compute adapted parameters with gradient descent:
0i =0 — aVoLr,(fo)

8: Sample datapoints D, = {x"), y9} from 7; for the
meta-update

9:  end for

10:  Update 0 <~ 0 — BV > 1y L£7:(for) using each D;
and L7, in Equation 2 or 3
11: end while




Meta-objective
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Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation 6 that can
quickly adapt to new tasks.



Cons

A significant computational expense in MAML comes
from the use of second derivatives when

backpropagating the meta-gradient through the
gradient operator in the meta-objective.

Solution?
Don't compute the second derivatives!



"Species" of MAML

The domains differ in the form of loss function and in how data is
generated by the task and presented to the model, but the same basic
adaptation mechanism can be applied in all cases.

e Supervised regression
e Supervised classification
e Reinforcement learning



Regression



Sinusoid regression

amplitude within [O.], 5.0]

phase within [0, n]

Input and output both have a dimensionality of 7
data points sampled uniformly from [-5.0, 5.0]
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http:/homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT4/node2.html


http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT4/node2.html

network: 2 hidden layers of size 40 with RelLU

loss: mean-squared error

MAML, K=5

MAML, K=10

pre-update -+ 1 gradstep -

pretrained, K=5, step size=0.01

-4}

-+ 10 grad steps —— ground truth

oretrained, K=10, step size=0.02

-6

A A usedforgrad ' pre-update
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1gradstep ==+ 10 grad steps



N-way
classification




Omniglot

20 instances of 1623 characters from 50 different alphabets
1200 for training, the rest for testing
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525 character concepts

Brenden M. Lake, Ruslan Salakhutdinov, Joshua B. Tenenbaum: Human-level concept learning through probabilistic program induction


https://www.cs.cmu.edu/~rsalakhu/papers/LakeEtAl2015Science.pdf

Omniglot evaluation

no conv: Fc+BN+RelU: 256 -> 128 -> 64 -> 64 -> |inear -> softmax
conv: (3x3x64 strided conv + BatchNorm + RelLU) * 4 -> softmax

5-way Accuracy

20-way Accuracy

Omniglot (Lake et al., 2011) 1-shot 5-shot I1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% - -
MAML, no conv (ours) 89.7+1.1% | 97.5+0.6% - -
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7+0.4% | 99.9+0.1% | 95.8 +0.3% | 98.9+ 0.2%




Minilmagenet

60,000 color images of size 84x84 with 100 classes (600 per class)
64 training classes, 12 validation classes, and 24 test classes

Lt'r'ain —

n01614925, n01632777, n01641577, n01664065, n01687978, n01695060, n01729322, n01773157, n01833805, n01871265, n01877812,
n01978455, n01986214, n02013706, n02066245, n02071294, n02088466, n02090379, n02091635, n02096437, n02097130, n02099429,
n02108089, n02108915, n02109047, n02109525, n02111889, n02115641, n02123045, n02129165, n02167151, n02206856, n02264363,
n02279972, n02342885, n02346627, n02364673, n02454379, n02481823, n02486261, n02494079, n02655020, n02793495, n02804414,
n02808304, n02837789, n02895154, n02909870, n02917067, n02966687, n03000684, n03014705, n03041632, n03045698, n03065424,
n03180011, n03216828, n03355925, n03384352, n03424325, n03452741, n03482405, n03494278, n03594734, n03599486, n03630383,
n03649909, n03676483, n03690938, n03742115, n03868242, n03877472, n03976467, n03976657, n03998194, n04026417, n04069434,
n04111531, n04118538, n04200800

Ltest —

n04201297, n04204347, n04239074, n04277352, n04370456, n04409515, n04456115, n04479046, n04487394, n04525038, n04591713,
104599235, n07565083, n07613480, n07695742, n07714571, n07717410, n07753275, n10148035, n12768682

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra: Matching Networks for One Shot Learning


https://arxiv.org/abs/1606.04080

Minilmagenet evaluation

(3x3x32 conv + BatchNorm + RelLU + 2x2 MaxPool) * 4 -> softmax

5-way Accuracy

Minilmagenet (Ravi & Larochelle, 2017) 1-shot 5-shot

fine-tuning baseline 28.86 £ 0.54% | 49.79 +0.79%
nearest neighbor baseline 41.08 +0.70% 51.04 + 0.65%
matching nets (Vinyals et al., 2016) 43.56 £+ 0.84% 55.31 + 0.73%
meta-learner LSTM (Ravi & Larochelle, 2017) | 43.44 4+ 0.77% 60.60 = 0.71%
MAML, first order approx. (ours) 48.07 +1.75% | 63.15 £+ 0.91%
MAML (ours) 48.70 £1.84% | 63.11 + 0.92%




Reinforcement
learning




half-cheetah, goal velocity

average return

number of gradient steps

https://sites.google.com/view/maml


https://sites.google.com/view/maml

MAML implementation

https://github.com/cbfinn/maml

VS
https://github.com/martinkersner/maml


https://github.com/cbfinn/maml
https://github.com/martinkersner/maml

https://arxiv.org/abs/1703.03400
https://sites.google.com/View/maml
https://github.com/cbfinn/maml
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

https://towardsdatascience.com/model-agnostic-meta-
learning-maml-8a245d9bc4ac

http://oeople.eecs.berkeley.edu/~cbfinn/
http://rail.eecs.berkeley.edu/nips_demo.html
https://github.com/cbfinn/maml_r|


https://sites.google.com/view/maml
https://github.com/cbfinn/maml
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
https://towardsdatascience.com/model-agnostic-meta-learning-maml-8a245d9bc4ac
http://people.eecs.berkeley.edu/~cbfinn/
http://rail.eecs.berkeley.edu/nips_demo.html
https://github.com/cbfinn/maml_rl
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Abstract

This paper considers metalearning problems, where there is a distribution of tasks, and we
would like to obtain an agent that performs well (i.e., learns quickly) when presented with a
previously unseen task sampled from this distribution. We present a remarkably simple met-
alearning algorithm called Reptile, which learns a parameter initialization that can be fine-tuned
quickly on a new task. Reptile works by repeatedly sampling a task, training on it, and moving
the initialization towards the trained weights on that task. Unlike MAML, which also learns an
initialization, Reptile doesn’t require differentiating through the optimization process, making
it more suitable for optimization problems where many update steps are required. We show
that Reptile performs well on some well-established benchmarks for few-shot classification. We
provide some theoretical analysis aimed at understanding why Reptile works.

1 Introduction

While machine learning systems have surpassed humans at many tasks, they generally need far
more data to reach the same level of performance. For example, Schmidt et al. [Sch09; STT12]
showed that human subijects can recognize new obiject categories based on a few example images.



Performs stochastic gradient descent (SGD) on each
task in a standard way — it does not unroll a
computation graph or calculate any second derivatives.



Algorithm 2 Reptile, batched version

Initialize ¢
for iteration = 1,2,... do
Sample tasks 7, 710,..., 7T,
for:=1,2,....,ndo
Compute W; = SGD(L,,, ¢, k)
end for
Update ¢ < ¢ + E% Yo (Wi — o)
end for




Evaluation

Algorithm 1-shot 5-way | 5-shot 5-way | 1-shot 20-way | 5-shot 20-way
MAML + Transduction 98.7 + 0.4% 99.9 + 0.1% 05.8 + 0.3% 98.9 + 0.2%
15*-order MAML + Transduction | 98.3 + 0.5% 99.2 + 0.2% 89.4 4+ 0.5% 97.9+0.1%

Reptile

95.32 + 0.05%

98.87 + 0.02%

88.27 + 0.30%

97.07 £ 0.12%

Reptile + Transduction

97.97 + 0.08%

99.47 + 0.04%

89.36 £ 0.20%

97.47 £ 0.10%

Table 2: Results on Omniglot

Algorithm

1-shot 5-way

5-shot 5-way

MAML + Transduction

48.70 4+ 1.84%

63.11 + 0.92%

15%-order MAML

+ Transduction

48.07 + 1.75%

63.15 + 0.91%

Reptile

45.79 + 0.44%

61.98 4+ 0.69%

Reptile + Transduction

48.21 + 0.69%

66.00 + 0.62%

Table 1: Results on Mini-ImageNet




demo

https://gist.github.com/joschu/f503500cda64f2ce87c8288906b09e2d


https://gist.github.com/joschu/f503500cda64f2ce87c8288906b09e2d
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