
Meta Learning

Seoul AI Meetup, September 16

Martin Kersner, m.kersner@gmail.com

mailto:m.kersner@gmail.com

References

Ensembling

AdaBoost

Net�ix Prize

Kaggle competitions

https://mlwave.com/kaggle-ensembling-guide/
https://github.com/ageron/handson-
ml/blob/master/07_ensemble_learning_and_random_forests.ipynb

http://www.robots.ox.ac.uk/~az/lectures/cv/adaboost_matas.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire20

http://www.net�ixprize.com/
https://medium.com/net�ix-techblog/net�ix-recommendations-beyond-the-5-sta
part-1-55838468f429

https://www.kaggle.com/

https://mlwave.com/kaggle-ensembling-guide/
https://github.com/ageron/handson-ml/blob/master/07_ensemble_learning_and_random_forests.ipynb
http://www.robots.ox.ac.uk/~az/lectures/cv/adaboost_matas.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf
http://www.netflixprize.com/
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://www.kaggle.com/

Mathematical Notation

 data, input space
 labels, output space
 is the feature vector of the i-th example
 is label (i.e., class) for
 number of training examples

 number of features
 weight of -th training example for -th base learner (AdaBoost)

 erorr function

Technical Terms

base learner = weak learner

X
Y
xi
yi xi
m
n

(i)Dj i j

E

Content

Prerequsities
Supervised Learning
Classi�cation, Regression
Data Splitting
Bias-Variance Tradeoff, Irreducible error
Under�tting, Over�tting

Ensembles
Voting Ensemble
Ranking

Meta Learning
Bagging
Boosting
Stacking/Blending

Nexar Challenge

Supervised Learning

 training examples of the form

Searching for a function

Classi�cation vs Regression

Regression
Output variable takes continuous values.
E.g. Price prediction of certain stock.

Classi�cation
Output variable takes class labels.
E.g. Prediction of what object is in image.

https://en.wikipedia.org/wiki/Supervised_learning

N {{ , }, … { , }}x1 y1 xn yn
g : X → Y

https://en.wikipedia.org/wiki/Supervised_learning

Data Splitting

Training dataset is used for training.
Validation dataset is used for model evaluation.
Testing data imitate real unseen data.

Data Splitting

Cross-validation

Generalization Error

Generalization error is measure of how accurately an algorithm is able to
predict outcome values for previously unseen data.
Generalization error is composed of three parts:

Bias
Variance
Irreducible Error

Due to noisiness of the data.
Can be reduced by cleaning the data (not using
wrong/inaccurate data points).

https://en.wikipedia.org/wiki/Generalization_error

https://en.wikipedia.org/wiki/Generalization_error

Bias, Variance

Bias
Error from wrong assumptions in the learning algorithm.
Can cause under�tting.

Variance
Error from sensitivity to small variations in the training set.
Can cause over�tting.

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

Bias, Variance

Bias-Variance Tradeo�

Increasing model complexity lead to increase of variance and reduction of
bias.
Reducing model complexity lead to increase of bias and reduction of variance.

Under�tting, Over�tting

Ensembles and Meta Learning

Ensembles
Meta-Algorithms

)

"Meta learning is a sub�eld of Machine learning where automatic
learning algorithms are applied on meta-data about machine
learning experiments."

https://en.wikipedia.org/wiki/Meta_learning_(computer_science

https://en.wikipedia.org/wiki/Meta_learning_(computer_science

Ensembles

Majority Voting Ensembles
Weighted Voting Ensemble
Rank Averaging

Voting Ensembles

Works better with low-correlated model predictions.
Good for hard predictions (e.g. multiclass classi�cation accuracy)
Final class is selected based on (weighted) majority voting.

https://mlwave.com/kaggle-ensembling-guide/

https://mlwave.com/kaggle-ensembling-guide/

Voting Ensembles

Approaches

Majority Voting Ensemble
Hard Voting
Soft Voting

Predict class with the highest class probability, averaged over
individual classi�ers.
In scikit-learn all weak classi�ers need to have implemented
predict_proba() method and voting parameter of

models set to True.

Weighted Voting Ensemble

Majority Voting Ensemble

Example

3 independent binary classi�cation models (A, B, C) with accuracy 70 %.

70 % of time correct prediction.
30 % of time wrong prediction.

At least two predictions (out of three) have to be correct.

Voting Mechanism

A: 1
B: 1
C: 0 Final classi�cation: 1

Majority Voting Ensemble

All three are correct

In [2]:

Two are correct

In [3]:

P3 = 0.7 * 0.7 * 0.7

print(P3)

P2 = 3 * (0.7 * 0.7 * 0.3)

print(P2)

0.3429999999999999

0.4409999999999999

Majority Voting Ensemble

One is correct

In [4]:

None is correct

In [5]:

P1 = 3 * (0.3 * 0.3 * 0.7)

print(P1)

P0 = 0.3 * 0.3 * 0.3

print(P0)

0.189

0.027

Majority Voting Ensemble

Result

Most of the time (P2 ~ 44 %) the majority vote corrects an error.

Prediction accuracy of majority ensembling mode will be 78.38 % (P3 + P2) which is
higher than when using models individually.

Using 5 independent binary models with accuracy 70 %, accuracy of majority voting
raises to 83.69 %.

Correlation

0 no correlation
+1 positive correlation
-1 negative correlation

Pearson Correlation

Linear correlation between two variables

Spearman's rank correlation coe�cient

Monotonic correlation between two variables

Open-source

https://en.wikipedia.org/wiki/Pearson_correlation_coef�cient

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coef�cient

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/correlations.py

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/correlations.py

Correlated Models

In [7]:

In [8]:

Accuracy with voting ensembles is still only 80 %!

For highly correlated models, majority voting enembles don't help much or not at all.

GT = np.array([1,1,1,1,1,1,1,1,1,1])

A = np.array([1,1,1,1,1,1,1,1,0,0]) # 80 % accuracy

B = np.array([1,1,1,1,1,1,1,1,0,0]) # 80 % accuracy

C = np.array([1,0,1,1,1,1,1,1,0,0]) # 70 % accuracy

sum(A+B+C >= 2)/len(A)

Out[8]: 0.80000000000000004

Non-correlated Models

In [9]:

Using highly uncorrelated models, accuracy raised to 90 %.

In [10]:

A = np.array([1,1,1,1,1,1,1,1,0,0]) # 80 % accuracy

B = np.array([0,1,1,1,0,1,1,1,0,1]) # 70 % accuracy

C = np.array([1,0,0,0,1,0,1,1,1,1]) # 60 % accuracy

sum(A+B+C >= 2)/len(A)

Out[10]: 0.90000000000000002

Majority Voting Ensemble

scikit-learn

In [12]:

sklearn.ensemble.VotingClassi�er

source: Hands-on Machine Learning with Scikit-Learn & Tensorflow, Chapter 7

log_clf = LogisticRegression(random_state=random_state)

rnd_clf = RandomForestClassifier(random_state=random_state)

svm_clf = SVC(random_state=random_state)

voting_clf = VotingClassifier(estimators=[('lr', log_clf),

 ('rf', rnd_clf),

 ('svc', svm_clf)],

 voting='hard') # or soft

voting_clf.fit(X_train, y_train)

Out[12]: VotingClassifier(estimators=[('lr', LogisticRegression(C=1.0, class_weight=Non

e, dual=False, fit_intercept=True,

 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,

 penalty='l2', random_state=42, solver='liblinear', tol=0.0001,

 verbose=0, warm_start=False)), ('rf', RandomFor...f',

 max_iter=-1, probability=False, random_state=42, shrinking=True,

 tol=0.001, verbose=False))],

 flatten_transform=None, n_jobs=1, voting='hard', weights=None)

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html

Weighted Voting Ensemble

Weights of individual models in ensemble can differ.
The main purpose is to give more weight to a better model.
E.g. Model with better performance should have larger impact. Low performing
models have to overrule (same prediction) high performing model, otherwise
their classi�cation result will be ignored.

Weighted Voting Ensemble

Approaches to Weight Selection

One of the most common challenge with ensemble modeling is to �nd optimal weights to
ensemble base models.

Same weights for each model
Heuristical approach
Use cross-validation score of base models to estimate weights
Explore Kaggle winning solutions

Averaging

Works well for a wide range of problems (classi�cation/regression) and metrics
(AUC, squared error or logaritmic loss).
Often reduces over�t (smoothens separation between classes).

Arithmetic Mean

Geometric Mean

Good when comparing values with different numeric ranges.

https://github.com/MLWave/Kaggle-Ensemble-
Guide/blob/master/kaggle_avg.py

(∏n
i=1 xi)

1
n

https://github.com/MLWave/Kaggle-Ensemble-
Guide/blob/master/kaggle_geomean.py

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_avg.py
https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_geomean.py

Averaging

Why it works?

Rank Averaging

Good for uncalibrated predictors.
Probability predictions aren't spread over whole range (0.0 - 1.0)

Works well on evaluation metric as ranking or threshold based like AUC.

Computation

1. Turn the predictions into ranks (np.argmin()).

2. Average these ranks.
3. Compute ranks of averages and normalize them to 0 - 1 range.

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_rankavg.py

https://www.kaggle.com/cbourguignat/why-calibration-works

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_rankavg.py
https://www.kaggle.com/cbourguignat/why-calibration-works

Rank Averaging

Example

In [13]: A = np.array([0.57, # 1

 0.04, # 0

 0.96, # 2

 0.99]) # 3

B = np.array([0.35000056, # 1

 0.35000002, # 0

 0.35000098, # 2

 0.35000111]) # 3

C = np.array([0.350000]*4)

When averaging model with uncorrelated model added information is only minimal

In [14]:

In [15]:

In [16]:

A = np.array([0.57, 0.04, 0.96, 0.99])

B = np.array([0.35000056, 0.35000002, 0.35000098, 0.35000111])

Arithmetic Mean

A_B = (A + B)/2

print(A_B)

A_C = (A + C)/2

print(A_B-A_C)

Rank Averaging

R_AB = (np.argsort(A)+np.argsort(B))/2

print(R_AB / np.max(R_AB))

[0.46000028 0.19500001 0.65500049 0.67000055]

[2.80000000e-07 1.00000000e-08 4.90000000e-07 5.55000000e-07]

[0.33333333 0. 0.66666667 1.]

How To Select Base Models?

 of base models
Model selection with replacement
Meta-algorithms

Forward Selection

https://en.wikipedia.org/wiki/Stepwise_regression

Meta-Algorithms

Bagging
Boosting
Stacking/Blending

Every algorithm consists of two steps ():

1. Producing a distribution of simple models on subsets of the original
data.

2. Combining the distribution of simple models into one aggregated
model.

stats.stackexchange.com

https://stats.stackexchange.com/a/19053

Meta-Algorithms

Pros

Better prediction
More stable model

Cons

Slower
Models are non-human readeable
Can cause over�tting

Bagging

1. Create random samples (sampling uniformly and with replacement) of the
training data set.

2. Train a model from each sample.
3. Combine results of these multiple classi�ers using average (regression) or

majority voting (classi�cation).

Bagging helps to reduce the variance error.
Models are trained independently.

https://en.wikipedia.org/wiki/Bootstrap_aggregating

https://en.wikipedia.org/wiki/Bootstrap_aggregating

Bagging

Pasting

Same method as bagging, however training samples are sampled without
replacement.
Set bootstrap=False in or

.
sklearn.ensemble.BaggingClassi�er

sklearn.ensemble.BaggingRegressor

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html

Bagging

Bagging

scikit-learn

sklearn.ensemble.BaggingClassi�er
sklearn.ensemble.BaggingRegressor

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html

In [17]: # source: Hands-on Machine Learning with Scikit-Learn & Tensorflow, Chapter 7

from sklearn.ensemble import BaggingClassifier

from sklearn.tree import DecisionTreeClassifier

bag_clf = BaggingClassifier(DecisionTreeClassifier(random_state=random_state),

 # 500 base models (Decision Trees)

 n_estimators=500,

 # if True, features are randomly selected with repla

cement

 bootstrap_features=False,

 # if False, then using all data

 bootstrap=True,

 random_state=random_state)

bag_clf.fit(X_train, y_train)

Out[17]: BaggingClassifier(base_estimator=DecisionTreeClassifier(class_weight=None, cri

terion='gini', max_depth=None,

 max_features=None, max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, presort=False, random_state=42,

 splitter='best'),

 bootstrap=True, bootstrap_features=False, max_features=1.0,

 max_samples=1.0, n_estimators=500, n_jobs=1, oob_score=False,

 random_state=42, verbose=0, warm_start=False)

Random Forest

Bagging algorithm
Base learners are .
Classi�cation, Regression
De-correlation by random sampling (both data and features).
An optimal number of trees can be found using cross-validation or by
observing the out-of-bag error.

Out-Of-Bag Error

The mean prediction error on each training sample , using only the trees that
did not have in their bootstrap sample.
oob_score_ attribute in when

trained with oob_score=True

https://en.wikipedia.org/wiki/Random_forest

Decision Trees

Xi

Xi

sklearn.ensemble.RandomForestClassi�er

https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Decision_tree_learning
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Random Forest

Training procedure

1. Select a random sample (from training data) with replacement.
2. At each node split, utilize only random subset of the features (= "feature

bagging").
If max_features=auto in

then

3. Repeat 1 and 2 steps until you obtain desired number of weak learners.
4. Combine base learners for �nal prediction using mode (classi�cation) or mean

(regression).

sklearn.ensemble.RandomForestClassi�er

size_of_subset = number of features
− −−−−−−−−−−−−−−−√

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Random Forest

scikit-learn

In [18]:

sklearn.ensemble.RandomForestClassi�er
sklearn.ensemble.RandomForestRegressor

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=100,

 max_depth=2,

 random_state=random_state)

clf.fit(X_train, y_train)

Out[18]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',

 max_depth=2, max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1,

 oob_score=False, random_state=42, verbose=0, warm_start=False)

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Extremely Randomized Trees

Same as but nodes are NOT split based on the most discriminative
threshold, thresholds are drawn at random for each candidate feature and the best of
these randomly-generated thresholds is picked as the splitting rule.

Decrease variance even more.
Bias slightly increase.

Random Forest

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Extremely Randomized Trees

scikit-learn

In [19]:

sklearn.ensemble.ExtraTreesClassi�er

from sklearn.ensemble import ExtraTreesClassifier

clf = ExtraTreesClassifier(n_estimators=100,

 max_depth=2,

 random_state=0)

clf.fit(X, y)

Out[19]: ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',

 max_depth=2, max_features='auto', max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

 min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1,

 oob_score=False, random_state=0, verbose=0, warm_start=False)

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html

Boosting

)

Boosting is a method of turning a sequence of weak learners to one strong learner.

Weak learner
Classi�er/Regressor which can label testing examples better than
random guessing.

Strong learner
Classi�er/Regressor that is arbitrarily well-correlated with the true
label.

https://en.wikipedia.org/wiki/Boosting_(machine_learning
http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf

https://en.wikipedia.org/wiki/Boosting_(machine_learning
http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf

Boosting

Properties

Models are trained sequentally.
Unlike bagging, data subset creation is not random and depends upon the
performance of the previous models.
When weak learners are put together, they are typically weighted in some way.

Boosting is primarily reducing bias.
Tends to over�t the training data.

Boosting

Training Procedure

1. Train a weak learner on whole training dataset.
2. Train another weak learner that will try to improve classi�cation/regression

results performed by previous weak learners.
3. Combine all weak learners together and evaluate.
4. Repeat steps 2-3 until you achieve desired accuracy or reach the maximum

number of weak learners.

AdaBoost

Properties

Any weak learner can be used (often used decision stumps).
Sensitive to noisy data and outliers.

https://en.wikipedia.org/wiki/AdaBoost

https://en.wikipedia.org/wiki/AdaBoost

Training Procedure

1. Assign weight (same for each example;) to each training example.

2. Train weak learner on whole training dataset.
3. Evaluate weak learner and reweight data accordingly.

Misclassi�ed examples gain weight.
Correctly clasi�ed examples lose weight.

4. Train another weak learner that focuses on examples that were misclassi�ed by
previous weak learner.

5. Evaluate weak learner and update weights appropriately (as in step 3).
6. Combine all weak learners using weighted sum and evaluate.
7. Repeat steps 4 - 6 until you achieve desired accuracy or reach the maximum

number of weak learners.

(i) =D1
1
m

AdaBoost

Reweighting

AdaBoost

Binary Classi�er

Minimizing error of AdaBoost classi�er at -th iteration:

, where represents error

function

WeakLearner = (x) = (x)ft αtht
AdaBoos (x) = sign((x))tT ∑T

t=1 ft

t

= E[AdaBoos () + ()]Et ∑i tt−1 xi αtht xi E

AdaBoost

Visualization of training

AdaBoost

scikit-learn

base_estimator de�nes a weak learner (requires sample_weight

parameter in fit() method).

n_estimator represents number of weak learners.

AdaBoostClassi�er

http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassi�er.html

sklearn.ensemble.AdaBoostClassifier(base_estimator=None,

 n_estimators=50,

 learning_rate=1.0,

 algorithm='SAMME.R',

 random_state=None)

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

Gradient Boosting

Trained sequentually
Classi�cation / Regression
Add models to an ensemble; each model is correcting its predecessor.
Fit new model to the residual errors made by previous model.
Early stopping

Technique to estimate number of base models.

from sklearn.tree import DecisionTreeRegressor

The first tree

t1 = DecisionTreeRegressor().fit(X, y)

The second tree

y2 = y - t1.predict(X)

t2 = DecisionTreeRegressor().fit(X, y2)

The third tree

y3 = y2 - t2.predict(X)

t3 = DecisionTreeRegressor().fit(X, y3)

Final prediction

t = sum(t1.predict(X_new) + t2.predict(X_new) + t3.predict(X_new))

Gradient Boosting

Stochastic Gradient Boosting

If subsample parameter is less than 1.0 sample only part of training dataset

.sklearn.ensemble.GradientBoostingRegressor

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor.staged_predict

Gradient Boosting

scikit-learn

Other open-source implementations

sklearn.ensemble.GradientBoostingRegressor

https://github.com/dmlc/xgboost
https://github.com/catboost/catboost
https://github.com/Microsoft/LightGBM

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://github.com/dmlc/xgboost
https://github.com/catboost/catboost
https://github.com/Microsoft/LightGBM

Stacking (Stacked Generalization)

Training a model to combine the predictions of several other models.

1. Split dataset to folds.
2. Train independently on each fold and predict for the others.
3. Aggregate predictions from different folds and use them as input to another

layer.
4. If there are more layers, predictions are split and trained on folds

independently again.

Because each layer uses the "same" dataset, due to incorrect data manipulation
information leak could happen.

n

n

Blending

Similar to stacking, but uses less data.

1. Split dataset to parts, where represents number of layers.
2. Train model(s) on the �rst part of data and predict on the second part.
3. Train another layer of model(s) using predictions from previous layer.
4. Repeat step 3 until is reached.

n n

n

Open-source implementation for stacking/blending

Ensembling
Stacking
Blending
Ensemble Generation
Ensemble Pruning
Dynamic Classi�er Selection
Dynamic Ensemble Selection

https://github.com/viisar/brew

https://github.com/viisar/brew

Nexar

