Meta Learning

Seoul Al Meetup, September 16

Martin Kersner, <u>m.kersner@gmail.com</u>

References

- Ensembling
 - https://mlwave.com/kaggle-ensembling-guide/
 - <u>https://github.com/ageron/handson-</u> <u>ml/blob/master/07_ensemble_learning_and_random_forests.ipynb</u>
- AdaBoost
 - http://www.robots.ox.ac.uk/~az/lectures/cv/adaboost_matas.pdf
 - http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2(
- Netflix Prize
 - http://www.netflixprize.com/
 - https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stapart-1-55838468f429
- Kaggle competitions
 - https://www.kaggle.com/

Mathematical Notation

- $X \, {\rm data}$, input space
- Y labels, output space
- x_i is the feature vector of the i-th example
- y_i is label (i.e., class) for x_i
- *m* number of training examples
- *n* number of features
- $D_j(i)$ weight of *i*-th training example for *j*-th base learner (AdaBoost)
- E erorr function

Technical Terms

base learner = weak learner

Content

- Prerequsities
 - Supervised Learning
 - Classification, Regression
 - Data Splitting
 - Bias-Variance Tradeoff, Irreducible error
 - Underfitting, Overfitting
- Ensembles
 - Voting Ensemble
 - Ranking
- Meta Learning
 - Bagging
 - Boosting
 - Stacking/Blending
- Nexar Challenge

Supervised Learning

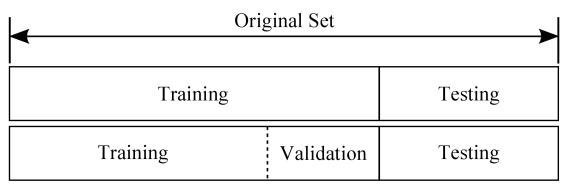
https://en.wikipedia.org/wiki/Supervised_learning

- N training examples of the form $\{\{x_1, y_1\}, \dots, \{x_n, y_n\}\}$
- Searching for a function g:X o Y

Classification vs Regression

- Regression
 - Output variable takes **continuous values**.
 - E.g. Price prediction of certain stock.
- Classification
 - Output variable takes **class labels**.
 - E.g. Prediction of what object is in image.

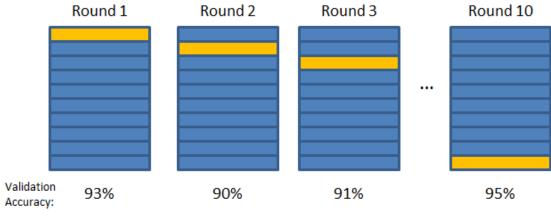
Data Splitting



- Training dataset is used for training.
- Validation dataset is used for model evaluation.
- Testing data imitate real unseen data.

Data Splitting

Cross-validation



Final Accuracy = Average(Round 1, Round 2, ...)

Generalization Error

https://en.wikipedia.org/wiki/Generalization_error

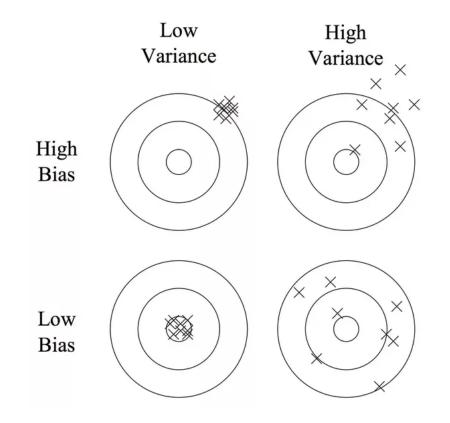
- Generalization error is measure of how accurately an algorithm is able to predict outcome values for previously **unseen data**.
- Generalization error is composed of three parts:
 - Bias
 - Variance
 - Irreducible Error
 - Due to noisiness of the data.
 - Can be reduced by cleaning the data (not using wrong/inaccurate data points).

Bias, Variance

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

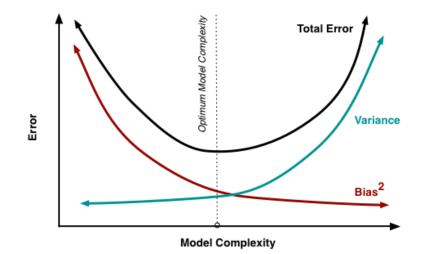
- Bias
 - Error from wrong assumptions in the learning algorithm.
 - Can cause **underfitting**.
- Variance
 - Error from **sensitivity to small variations** in the training set.
 - Can cause overfitting.

Bias, Variance

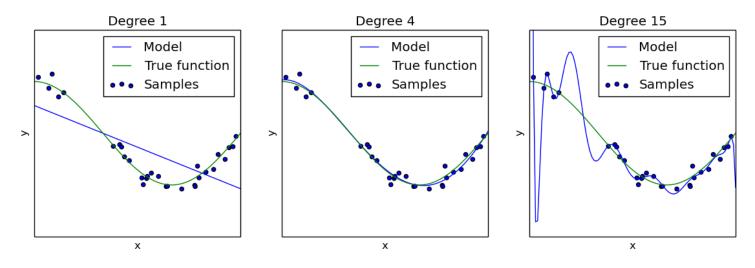


Bias-Variance Tradeoff

- Increasing model complexity lead to increase of variance and reduction of bias.
- Reducing model complexity lead to increase of bias and reduction of variance.



Underfitting, Overfitting



Ensembles and Meta Learning

https://en.wikipedia.org/wiki/Meta_learning_(computer_science)

"Meta learning is a subfield of Machine learning where **automatic** *learning algorithms* are applied on meta-data about machine learning experiments."

- Ensembles
- Meta-Algorithms

Ensembles

- Majority Voting Ensembles
- Weighted Voting Ensemble
- Rank Averaging

Voting Ensembles

https://mlwave.com/kaggle-ensembling-guide/

- Works better with **low-correlated** model predictions.
- Good for hard predictions (e.g. multiclass classification accuracy)
- Final class is selected based on (weighted) majority voting.

Voting Ensembles

Approaches

- Majority Voting Ensemble
 - Hard Voting
 - Soft Voting
 - Predict class with the highest class probability, averaged over individual classifiers.
 - In scikit-learn all weak classifiers need to have implemented predict_proba() method and voting parameter of models set to True.
- Weighted Voting Ensemble

Example

3 independent binary classification models (A, B, C) with accuracy 70 %.

- 70 % of time correct prediction.
- 30 % of time wrong prediction.

At least two predictions (out of three) have to be correct.

• Final classification: 1

All three are correct

In [2]: P3 = 0.7 * 0.7 * 0.7
print(P3)

0.34299999999999999

Two are correct

In [3]: P2 = 3 * (0.7 * 0.7 * 0.3)
print(P2)

0.44099999999999999

One is correct

In [4]: P1 = 3 * (0.3 * 0.3 * 0.7)
print(P1)

0.189

None is correct

In [5]: P0 = 0.3 * 0.3 * 0.3
print(P0)
0.027

Result

Most of the time (P2 ~ 44 %) the majority vote corrects an error.

Prediction accuracy of majority ensembling mode will be **78.38** % (P3 + P2) which is higher than when using models individually.

Using **5** independent binary models with accuracy 70 %, accuracy of majority voting raises to **83.69** %.

Correlation

- **0** no correlation
- +1 positive correlation
- -1 negative correlation

Pearson Correlation

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

• Linear correlation between two variables

Spearman's rank correlation coefficient

https://en.wikipedia.org/wiki/Spearman%27s rank correlation coefficient

• Monotonic correlation between two variables

Open-source

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/correlations.py

Correlated Models

Out[8]: 0.8000000000000004

Accuracy with voting ensembles is still only 80 %!

For highly correlated models, majority voting enembles don't help much or not at all.

Non-correlated Models

Using highly uncorrelated models, accuracy raised to 90 %.

In [10]: sum(A+B+C >= 2)/len(A)

Out[10]: 0.90000000000000002

scikit-learn

sklearn.ensemble.VotingClassifier

```
In [12]: # source: Hands-on Machine Learning with Scikit-Learn & Tensorflow, Chapter 7
         log clf = LogisticRegression(random state=random state)
         rnd clf = RandomForestClassifier(random state=random state)
         svm clf = SVC(random state=random state)
         voting clf = VotingClassifier(estimators=[('lr', log clf),
                                                    ('rf', rnd clf),
                                                    ('svc', svm clf)],
                                        voting='hard') # or soft
         voting clf.fit(X train, y train)
          VotingClassifier(estimators=[('lr', LogisticRegression(C=1.0, class weight=Non
Out[12]:
          e, dual=False, fit intercept=True,
                    intercept scaling=1, max iter=100, multi class='ovr', n jobs=1,
                    penalty='l2', random_state=42, solver='liblinear', tol=0.0001,
                    verbose=0, warm start=False)), ('rf', RandomFor...f',
            max iter=-1, probability=False, random state=42, shrinking=True,
            tol=0.001, verbose=False))],
```

flatten_transform=None, n_jobs=1, voting='hard', weights=None)

Weighted Voting Ensemble

- Weights of individual models in ensemble can differ.
- The main purpose is to give more weight to a better model.
- E.g. Model with better performance should have larger impact. Low performing models have to overrule (same prediction) high performing model, otherwise their classification result will be ignored.

Weighted Voting Ensemble

Approaches to Weight Selection

One of the most common challenge with ensemble modeling is to find optimal weights to ensemble base models.

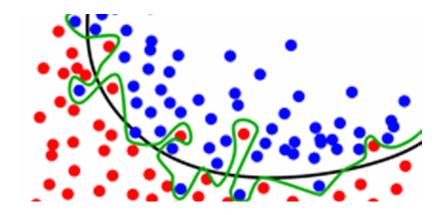
- Same weights for each model
- Heuristical approach
- Use cross-validation score of base models to estimate weights
- Explore Kaggle winning solutions

Averaging

- Works well for a wide range of problems (classification/regression) and metrics (AUC, squared error or logaritmic loss).
- Often reduces overfit (smoothens separation between classes).
- Arithmetic Mean
 - <u>https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_avg.py</u>
- Geometric Mean
 - $(\prod_{i=1}^n x_i)^{\frac{1}{n}}$
 - Good when comparing values with different numeric ranges.
 - <u>https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_geomean.py</u>

Averaging

Why it works?



Rank Averaging

https://github.com/MLWave/Kaggle-Ensemble-Guide/blob/master/kaggle_rankavg.py

https://www.kaggle.com/cbourguignat/why-calibration-works

- Good for uncalibrated predictors.
 - Probability predictions aren't spread over whole range (0.0 1.0)
- Works well on evaluation metric as ranking or threshold based like AUC.

Computation

- 1. Turn the predictions into ranks (np.argmin()).
- 2. Average these ranks.
- 3. Compute ranks of averages and normalize them to 0 1 range.

Rank Averaging

Example

In [13]:	A = np.array([0.57, # 1 0.04, # 0 0.96, # 2 0.99]) # 3
	B = np.array([0.35000056, # 1 0.35000002, # 0 0.35000098, # 2 0.35000111]) # 3
	C = np.array([0.350000]*4)

When averaging model with uncorrelated model added information is only minimal

A = np.array([0.57, 0.04, 0.96, 0.99])

B = np.array([0.35000056, 0.35000002, 0.35000098, 0.35000111])

In [14]: # Arithmetic Mean A B = (A + B)/2print(A B) $[0.46000028 \ 0.19500001 \ 0.65500049 \ 0.67000055]$ In [15]: A C = (A + C)/2print(A B-A C) 2.8000000e-07 1.00000000e-08 4.9000000e-07 5.5500000e-071 In [16]: # Rank Averaging R AB = (np.argsort(A)+np.argsort(B))/2print(R AB / np.max(R AB)) [0.33333333 0. 0.66666667 1.]

How To Select Base Models?

- Forward Selection of base models
- Model selection with replacement
- Meta-algorithms

Meta-Algorithms

- Bagging
- Boosting
- Stacking/Blending
- Every algorithm consists of two steps (<u>stats.stackexchange.com</u>):
 - 1. Producing a distribution of **simple models** on **subsets** of the original data.
 - 2. Combining the distribution of simple models into one **aggregated** model.

Meta-Algorithms

Pros

- Better prediction
- More stable model

Cons

- Slower
- Models are non-human readeable
- Can cause overfitting

Bagging

https://en.wikipedia.org/wiki/Bootstrap_aggregating

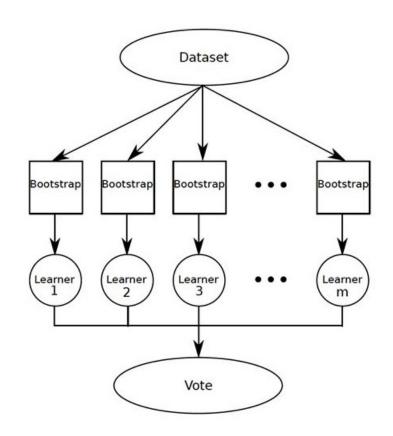
- 1. Create **random samples** (sampling uniformly and **with replacement**) of the training data set.
- 2. Train a model **from each sample**.
- 3. **Combine** results of these multiple classifiers using **average** (regression) or **majority voting** (classification).
- Bagging helps to reduce the variance error.
- Models are trained **independently**.

Bagging

Pasting

- Same method as bagging, however training samples are sampled **without replacement**.
- Set bootstrap=False in <u>sklearn.ensemble.BaggingClassifier</u> or <u>sklearn.ensemble.BaggingRegressor</u>.

Bagging



Bagging

scikit-learn

- <u>sklearn.ensemble.BaggingClassifier</u>
- <u>sklearn.ensemble.BaggingRegressor</u>

In [17]: *# source: Hands-on Machine Learning with Scikit-Learn & Tensorflow, Chapter 7* from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier bag clf = BaggingClassifier(DecisionTreeClassifier(random state=random state), # 500 base models (Decision Trees) n estimators=500, *# if True, features are randomly selected with repla* cement bootstrap features=False, *# if False, then using all data* bootstrap=True, random state=random state) bag clf.fit(X train, y train) BaggingClassifier(base estimator=DecisionTreeClassifier(class weight=None, cri Out[17]: terion='gini', max depth=None, max features=None, max leaf nodes=None, min impurity decrease=0.0, min impurity split=None, min samples leaf=1, min samples split=2, min weight fraction leaf=0.0, presort=False, random state=42, splitter='best'), bootstrap=True, bootstrap features=False, max features=1.0, max samples=1.0, n estimators=500, n jobs=1, oob score=False, random state=42, verbose=0, warm start=False)

Random Forest

https://en.wikipedia.org/wiki/Random_forest

- Bagging algorithm
- Base learners are <u>Decision Trees</u>.
- Classification, Regression
- De-correlation by **random sampling** (both data and features).
- An **optimal number of trees** can be found using **cross-validation** or by observing the **out-of-bag error**.

Out-Of-Bag Error

- The mean prediction error on each training sample X_i , using only the trees that did not have X_i in their bootstrap sample.
- oob_score_attribute in <u>sklearn.ensemble.RandomForestClassifier</u> when trained with oob_score=True

Random Forest

Training procedure

- 1. Select a random sample (from training data) with replacement.
- 2. At each node split, utilize only random subset of the features (= "feature bagging").
 - If max_features=auto in <u>sklearn.ensemble.RandomForestClassifier</u> then $size_of_subset = \sqrt{number\ of\ features}$
- 3. Repeat 1 and 2 steps until you obtain desired number of weak learners.
- 4. Combine base learners for final prediction using **mode** (classification) or **mean** (regression).

Random Forest

scikit-learn

- <u>sklearn.ensemble.RandomForestClassifier</u>
- <u>sklearn.ensemble.RandomForestRegressor</u>

depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False)

Extremely Randomized Trees

Same as <u>Random Forest</u> but **nodes are NOT split based on the most discriminative threshold**, thresholds are drawn at **random** for each candidate feature and the best of these randomly-generated thresholds is picked as the splitting rule.

- Decrease variance even more.
- Bias slightly increase.

Extremely Randomized Trees

scikit-learn

sklearn.ensemble.ExtraTreesClassifier

In [19]:	<pre>from sklearn.ensemble import ExtraTreesClassifier</pre>
	<pre>clf = ExtraTreesClassifier(n_estimators=100,</pre>
	clf.fit(X, y)
Out[19]:	<pre>ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini', max_depth=2, max_features='auto', max_leaf_nodes=None,</pre>

max_depth=2, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1, oob_score=False, random_state=0, verbose=0, warm_start=False)

Boosting

https://en.wikipedia.org/wiki/Boosting_(machine_learning) http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf

Boosting is a method of turning a <u>sequence</u> of weak learners to one strong learner.

- Weak learner
 - Classifier/Regressor which can label testing examples better than random guessing.
- Strong learner
 - Classifier/Regressor that is arbitrarily well-correlated with the true label.

Boosting

Properties

- Models are trained **sequentally**.
- Unlike bagging, **data subset creation is not random** and depends upon the performance of the previous models.
- When weak learners are put together, they are typically weighted in some way.
- Boosting is primarily **reducing bias**.
- Tends to overfit the training data.

Boosting

Training Procedure

- 1. Train a weak learner on whole training dataset.
- 2. Train another weak learner that will try to improve classification/regression results performed by previous weak learners.
- 3. Combine all weak learners together and evaluate.
- 4. Repeat steps 2-3 until you achieve desired accuracy or reach the maximum number of weak learners.

https://en.wikipedia.org/wiki/AdaBoost

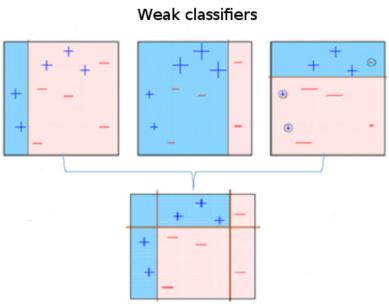
Properties

- Any weak learner can be used (often used decision stumps).
- Sensitive to noisy data and outliers.

Training Procedure

- 1. Assign weight (same for each example; $D_1(i) = rac{1}{m}$) to each training example.
- 2. Train weak learner on whole training dataset.
- 3. Evaluate weak learner and reweight data accordingly.
 - Misclassified examples **gain** weight.
 - Correctly clasified examples lose weight.
- 4. Train another weak learner that focuses on examples that were misclassified by previous weak learner.
- 5. Evaluate weak learner and update weights appropriately (as in step 3).
- 6. Combine all weak learners using **weighted sum** and evaluate.
- 7. Repeat steps 4 6 until you achieve desired accuracy or reach the maximum number of weak learners.

Reweighting



Strong classifier

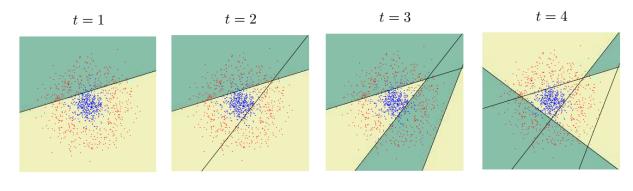
Binary Classifier

- $WeakLearner = f_t(x) = \alpha_t h_t(x)$ $AdaBoost_T(x) = sign(\sum_{t=1}^T f_t(x))$

Minimizing error of AdaBoost classifier at t-th iteration:

• $E_t = \sum_i E[AdaBoost_{t-1}(x_i) + lpha_t h_t(x_i)]$, where E represents error function

Visualization of training

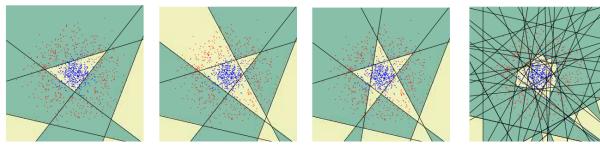


t = 5

t = 7

t = 6

t = 40



scikit-learn

- base_estimator defines a weak learner (requires sample_weight parameter in fit() method).
- n_estimator represents number of weak learners.

AdaBoostClassifier

http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

Gradient Boosting

- Trained sequentually
- Classification / Regression
- Add models to an ensemble; each model is correcting its predecessor.
- Fit new model to the **residual errors** made by previous model.
- Early stopping
 - Technique to estimate number of base models.

```
from sklearn.tree import DecisionTreeRegressor
```

```
# The first tree
t1 = DecisionTreeRegressor().fit(X, y)
```

```
# The second tree
y2 = y - t1.predict(X)
t2 = DecisionTreeRegressor().fit(X, y2)
```

```
# The third tree
y3 = y2 - t2.predict(X)
t3 = DecisionTreeRegressor().fit(X, y3)
# Final prediction
t = sum(t1.predict(X new) + t2.predict(X new) + t3.predict(X new))
```

Gradient Boosting

Stochastic Gradient Boosting

If subsample parameter is less than 1.0 sample only part of training dataset sklearn.ensemble.GradientBoostingRegressor.

Gradient Boosting

scikit-learn

sklearn.ensemble.GradientBoostingRegressor

Other open-source implementations

- <u>https://github.com/dmlc/xgboost</u>
- <u>https://github.com/catboost/catboost</u>
- <u>https://github.com/Microsoft/LightGBM</u>

Stacking (Stacked Generalization)

Training a model to combine the predictions of several other models.

- 1. Split dataset to n folds.
- 2. Train independently on each fold and predict for the others.
- 3. Aggregate predictions from different folds and use them as input to another layer.
- 4. If there are more layers, predictions are split and trained on n folds independently again.
- Because each layer uses the "same" dataset, due to incorrect data manipulation **information leak** could happen.

Blending

• Similar to stacking, but uses less data.

Split dataset to n parts, where n represents number of layers.
 Train model(s) on the first part of data and predict on the second part.
 Train another layer of model(s) using predictions from previous layer.
 Repeat step 3 until n is reached.

Open-source implementation for stacking/blending

https://github.com/viisar/brew

- Ensembling
- Stacking
- Blending
- Ensemble Generation
- Ensemble Pruning
- Dynamic Classifier Selection
- Dynamic Ensemble Selection

Nexar

Model 1 Model 2 Final model

