Nexar deep learning challenge II

Vehicle Detection in the Wild using the NEXET Dataset

Rules & conditions:

- Include running code, and dependencies
- 5 vehicle categories: car, van, pickup-truck, truck, and bus.
- Includes images at night
- Open source license only!
- No hand-labelling :-(

Object detection pitching idea...

Title	Approach	Code available
YOLO9000: Better,Faster,Stronger	'YOLO2'	https://pjreddie.com/darknet/yolo/ C+Cuda+config files
SSD: Single Shot MultiBox Detector	Discretized default bounding	https://github.com/balancap/SSD-Tensorflow
	box shape	https://github.com/weiliu89/caffe/tree/ssd
Perceptual Generative Adversarial Networks for Small	GAN for super-resolution	?
Object Detection		
Reinforcement Learning for Visual Object Detection	RL / progressive fixation and	?
	evidence	
Tree-Structured Reinforcement Learning for Sequential	RL / Q-learning of progressive	?
Object Localization	image 'crop'	
Hierarchical Object Detection with Deep Reinforcement	RL / Q learning of progressive	https://github.com/imatge-upc/detection-2016-nipsws
Faster R-CNN	CNN	https://github.com/rbgirshick/py-faster-rcnn

Older methods, and base building blocks

Name	Link	N.B.
VGG-16	https://github.com/fcholle t/keras/blob/master/kera s/applications/vgg16.py	Building block for 'some' of the papers, esp. RL related
HOG / misc feature systems	http://www.vlfeat.org/api/ hog.html	Combined with cascaded classifiers

(historical) Example of pre-filter: histogram of oriented gradient

Many more, sometimes appear in fairly recent papers

RL/Trees [1] 13 alternatives per 'branch'

RL/Trees [2] 6 alternatives per 'branch'

Fixation & evidence based illustration

Small object detection GAN

YOLO – You only look once

Several approaches ... need some help to choose wisely

- Bounding boxes
- Bounding boxes (RL)
- Features
- Detection GAN: hyperesolution + small objects ("macro-features" ?)
- How to improve robustness? (GAN?)

Embedded side: FPGA (one proposal, later phase)

- tutorial-chapO4-example2-simplekerneL_EngineCode/src/simple/SimpleKerneL.maxj - MaxIDE (on 51432		
La Contutoria	I-chap04-example2 > DFE	
lorer 23	D SimpleKernel.maxj 2	
8		
hap04-example2-sin	ple *import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;	
Code	class SimpleKernel extends Kernel (
udes	SimpleKernel (KernelParameters parameters) (
pleCpuCode.c	super (parameters);	
afile.	// Input	
enie	DFEVar x = io.input("x", dfeFloat(8, 24));	
efile.files.include	DFEVar result = $x^*x + x_i$	
efile.rules		
Code	<pre>// Output io.output("v", result, d/eFloet(8, 24));</pre>	
)	
mala		
mpia		
SimpleKernel.maxj	🔲 🖸 Console 🛛 🖉 🙀 🖓 🖓 🔂	
SimpleManager.ma	DFE (tutorial-chap04-example2-simplekernel)	
SimpleKernel.maxj	anr The 17:59: MaxCompiler version: 2016 1	
ules	Tue 17:59: Ruild "Simple" start time: Tue Jun 21 17:59:15 UTC 2016	
	Tue 17:59: Main build process running as user root on host 514328d9be75	
- Contraction	Tue 17:59: Build location: /root/workspace/tutorial-chap04-example2-simp Tue 17:59: Detailed build log available in " build.log"	
ulation	Tue 17:59: Instantiating manager	
	Tue 17:59: Instantiating kernel "SimpleKernel"	
	Tue 17:59: Compiling manager (CPU I/O Only)	
	Tue 17:59: Compiling kernel "SimpleKernel"	
	Tue 17:59: Generating input files (VHDL, netlists, MegaNizard/CoreGen)	
	Tue 18:00: Running back-end build (16 phases)	
	Tue 18:00: (2/16) - Prepare for Placement (QuartusMap)	
	Writable Smart Insert 13:1	

Hardware: logic programmable chip

- Less power consumption
- Faster
- 'Safer'

Meta compiler: MaxCompiler, Lava, lava (Haskell DSL), chisel, myHDL, TVM verilog output, ...

... And this is just to pitch an idea (1/2)

• Let's discuss how we can solve this and get started!

Pitching Idea for Lane Detection Using DL

Pitching Idea

Some Starting Literature

- http://cs229.stanford.edu/proj2013/PazhayampallilKuan-DeepLearningLaneDetectionAutonomousVehicleLocalization.pdf
- http://www.cvfoundation.org/openaccess/content_cvpr_2016_workshops/w3/papers/Gurghian_DeepLa nes_End-To-End_Lane_CVPR_2016_paper.pdf
- https://github.com/mvirgo/MLND-Capstone
- http://ocean.kisti.re.kr/downfile/volume/ieek1/OBDDBE/2016/v11n3/OBDDBE_2016_v11 n3_163.pdf
- https://www.researchgate.net/profile/Vijay_John3/publication/281642917_Real-Time_Lane_Estimation_using_Deep_Features_and_Extra_Trees_Regression/links/55f256f c08aedecb6902120b/Real-Time-Lane-Estimation-using-Deep-Features-and-Extra-Trees-Regression.pdf

Current Limit of Lane detection

- Various lighting condition and road condition cannot be accounted for
- Perhaps with deep learning, we can train it with lots of different weather data

Two possible way

- Scene Parsing > lane information (need find annotated scene parsed data)
- Traditional Lane Detection algorithm -> create data set
 ->train the model

Scene parsing : Segnet

- https://www.youtube.com/watch?v=CxanE_W46ts
- · Get the road from scene parsing, connect them together

Traditional Lane Detection method

 https://medium.com/towards-data-science/lane-detection-withdeep-learning-part-1-9e096f3320b7

- But this is only when we have calibrated camera available
- Input is image, Output is polynomial coefficients, curves projected back to the screen
 - Create Dataset, visually check all the videos. This will take up most of the time.

... And this is just to pitch an idea

• Let's discuss how we can solve this and get started!