Recurrent Neural Networks

Seoul Al Meetup, August 5

Martin Kersner, m.kersner@gmail.com



mailto:m.kersner@gmail.com

References

Books

e Hands-On Machine Learning with Scikit-Learn and Tensorflow (Chapter 14.
Recurrent Neural Networks)
® https://www.safaribooksonline.com
= https://github.com/ageron/handson-mi
e Deep Learning Book (Chapter 10: Sequence Modeling: Reccurent and Recursive
Nets)
= http://www.deeplearningbook.org/
= https://github.com/HFTrader/DeeplearningBook



https://www.safaribooksonline.com/
https://github.com/ageron/handson-ml
http://www.deeplearningbook.org/
https://github.com/HFTrader/DeepLearningBook

Videos

e CS231n Lecture 10 - Recurrent Neural Networks, Image Captioning, LSTM
(Andrej Karpathy)

* Lecture 8: Recurrent Neural Networks and Language Models (Richard Socher)

e Deep Learning Summer School 2016, Recurrent Neural Networks (Yoshua
Bengio)

e Ch 10: Recurrent/Recursive Nets, Deeplearning Textbook Study Group
(Jeremy Howard)

o MIT 6.5094: Recurrent Neural Networks for Steering Through Time (Lex

Fridman)



https://www.youtube.com/watch?v=yCC09vCHzF8&t=1s
https://www.youtube.com/watch?v=Keqep_PKrY8
http://videolectures.net/deeplearning2016_bengio_neural_networks/
https://www.youtube.com/watch?v=o2QuErsWp6k
https://www.youtube.com/watch?v=nFTQ7kHQWtc

Feed Forward Neural Networks

Feed Forward Neural Networks has following limitations.

e |nputs and outputs have fixed size.
e Assume independence between input data.



Recurrent Neural Networks (RNN)

e RNN operate over sequences of data.

= Sequences in the inputs.

= Sequences in the outputs.

= Sequences in both inputs and outputs.
e Weights and biases are shared over time.
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Left: Recurrent neural network with one neuronin cell.

Right: Unfolded (= unrolled) recurrent neural network with one neuron in cell.



Implementation of single RNN cell

# x represents input data [batch size, n input features]
# h represents hidden state [batch size, n neurons]

# W xh weights applied to input data [n input features, n neurons]
# W hh weights of hidden state [n neurons, n neurons]

# W _hy weights for output [n _neurons, n outputs]

# activation function tanh squashes data in between [-1, 1]

h = np.tanh(np.dot(x, W xh) + np.dot(h, W _hh))

# same as expression above
#h = np.tanh(np.dot(np.hstack((x, h)), np.vstack((W xh, W hh))))

# prediction at current time
y = np.dot(h, W hy)



Layer of Recurrent Neurons

Connections between

e input and hidden layer,
* hidden layerin time ¢; and hidden layer in time ¢;, ; and
e hidden layer and output layer

are fully connected.
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Left: Recurrent neural network with cell with 5 neurons.

Right: Unfolded (= unrolled) recurrent neural network with 5 neurons.



Memory Cell

e Simple recurrent neuron or layer of recurrent neurons.
e Memory cell preserves state across time steps.



Different inputs and output in RNN architectures

e Vector to Vector (Feed Forward Neural Network)

e \ector to Sequence (e.g. Image Captioning)

e Sequence to Vector (e.g. Sentiment Analysis)

e Sequence to Sequence (e.g. Machine Translation)

e Synced Sequence to Sequence (e.g. Video Captioning)

one to one one to many many to one many to many many to many




Building RNN in Tensorflow

1. Manully
2.static rnn()
3.dynamic_rnn()



In [2]:

In [5]:

Building RNN manually

n features
n_neurons
n_steps

# batch of
X0 batch
X1 batch

3
5
2

size 4 for two time steps
np.array([[0, 1, 2], [3, 4, 5],
np.array([[9, 8, 71, [0, O, O],

[6, 7, 8],
[6' 5' 4]'

[9, 0,
[3, 2,

~ o



In [19]:

# source https://github.com/ageron/handson-ml

# placeholders for input data at two time steps
X0 = tf.placeholder(tf.float32, [None, n features])
X1 = tf.placeholder(tf.float32, [None, n features])

# weight for input data to cell connection
Wx = tf.Variable(tf.random normal(shape=[n features, n neurons], dtype=tf.float32))

# weight for recurrent connection (t-1 => t)
Wy = tf.Variable(tf.random normal(shape=[n neurons, n neurons], dtype=tf.float32))

# bias
b = tf.Variable(tf.zeros([1, n neurons], dtype=tf.float32))

# tf.matmul (X0, Wx) : [None, n features] * [n features, n neurons]
s]
YO = tf.tanh(tf.matmul (X0, Wx) + b)

[None, n _neuron

# tf.matmul (YO, Wy) : [None, n _neurons] * [n neurons, n _neurons]
s]

# tf.matmul (X1, Wx) : [None, n features] * [n _neurons, n _neurons]
s]

#b : [1, n neurons]

Y1 = tf.tanh(tf.matmul (YO, Wy) + tf.matmul(X1l, Wx) + b)

[None, n _neuron

[None, n_neuron



In [21]: def process batches(X0 batch, X1 batch):
init = tf.global variables initializer()

with tf.Session() as sess:
init.run()
YO val, Y1 val = sess.run([YO, Y1], feed dict={X0: X0 batch, X1: X1 batch})

print("YO\n", YO val)
print("\nY1\n", Y1 val)

In [22]: process batches(X0 batch, X1 batch)

YO
[[-0.0664006 0.96257669 0.68105787 0.70918542 -0.89821595]
[ 0.9977755 -0.71978885 -0.99657625 0.9673925 -0.99989718]
[ 0.99999774 -0.99898815 -0.99999893 0.99677622 -0.99999988]
[ 1. -1. -1. -0.99818915 0.99950868] ]

Y
[ 1. -1. -1. 0.40200216 -1. ]
-0.12210433 0.62805319 0.96718419 -0.99371207 -0.25839335]

0.99999827 -0.9999994 -0.9999975 -0.85943311 -0.9999879 ]
0.

1
[
[
[
[ 90928284 -0.99999815 -0.99990582 0.98579615 -0.92205751]]



Building RNN using static_rnn()

* tf.contrib.rnn.BasicRNNCell
e tf.nn.static rnn creates one cell per time step.
e Each input placeholder (X0, X1) have to be manually defined.

In [24]: # source https://github.com/ageron/handson-ml
X0 = tf.placeholder(tf.float32, [None, n features])
X1 = tf.placeholder(tf.float32, [None, n features])

basic cell = tf.contrib.rnn.BasicRNNCell(num units=n neurons)
output seqs, states = tf.nn.static rnn(basic cell, [X0, X1], dtype=tf.float32)
YO, Y1 = output seqs


https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicRNNCell
https://www.tensorflow.org/api_docs/python/tf/nn/static_rnn

static_rnn() output

In [25]: process batches(X0 batch, X1 batch)

YO
[[ 0.30741334 -0.32884315 -0.65428472 -0.93850589 0.52089024]
[ 0.99122757 -0.95425421 -0.75180793 -0.99952078 0.98202348]
[ 0.99992681 -0.99783254 -0.82473528 -0.9999963 0.99947774]
[ 0.99677098 -0.68750614 0.84199691 0.93039107 0.8120684 ]]
Y1l
[[ 0.99998885 -0.99976051 -0.06679298 -0.99998039 0.99982214]
[-0.65249437 -0.51520866 -0.37968954 -0.59225935 -0.08968385]
[ 0.99862403 -0.99715197 -0.03308626 -0.99915648 0.99329019]
[ 0.99681675 -0.95981938 0.39660636 -0.83076048 0.79671967]]



static_rnn() with single input placeholder

In [8]: # source https://github.com/ageron/handson-ml
X = tf.placeholder(tf.float32, [None, n steps, n features])
X seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))

basic cell = tf.contrib.rnn.BasicRNNCell(num units=n_neurons)
output seqs, states = tf.nn.static rnn(basic cell, X seqs, dtype=tf.float32)
outputs = tf.transpose(tf.stack(output seqs), perm=[1l, 0, 2])



In [13]:

def process batches2(X0 batch, X1 batch):

# source https://github.com/ageron/handson-ml

X0 batch tmp = X0 batch[:, np.newaxis, :]

X1 batch tmp = X1 batch[:, np.newaxis, :]

X batch = np.concatenate( (X0 batch tmp, X1 batch tmp), axis=1)

init = tf.global variables initializer()

with tf.Session() as sess:
init.run()
outputs val = outputs.eval(feed dict={X: X batch})

# YO output at t = 0
# Y1 output at t = 0
print("YO\n", np.transpose(outputs val, axes=[1, 0, 2])[0])
print("\nY1l\n", np.transpose(outputs val, axes=[1, 0, 2])[1])



In [14]: process batches2(X0 batch, X1 batch)

YO
[[-0.45652324 -0.68064123 0.40938237 0.63104504 -0.45732826]
[-0.80015349 -0.99218267 ©0.78177971 0.9971031 -0.99646091]
[-0.93605185 -0.99983788 0.93088669 0.99998152 -0.99998295]
[ 0.99273688 -0.99819332 -0.55543643 0.9989031 -0.9953323 ]]

Y1
[[-0.94288003 -0.99988687 0.94055814 0.99999851 -0.9999997 ]
[-0.63711601 0.11300932 0.5798437 0.43105593 -0.63716984]
[-0.9165386 -0.99456042 0.89605415 0.99987197 -0.99997509]
[-0.02746334 -0.73191994 0.7827872  0.95256817 -0.97817713]]



In [46]:

Building RNN using dynamic_rnn()

* tf.nn.dynamic rnn

e No need to unstack, stack and transpose!

e |Input [None, n steps, n features].
e Qutput [None, n steps, n neurons]

# source https://github.com/ageron/handson-ml
X = tf.placeholder(tf.float32, [None, n steps, n features])

basic cell = tf.contrib.rnn.BasicRNNCell(num units=n neurons)
outputs, states = tf.nn.dynamic rnn(basic cell, X, dtype=tf.float32)

process batches2(X0 batch, X1 batch)

YO
[[ 0.80872238 -0.52312446 -0.6716494 -0.69762248 -0.54384488]
[ 0.99547106 -0.02155113 -0.99482894 0.17964774 -0.83173698]
[ 0.99990267 0.49111056 -0.9999314 0.8413834 -0.9444679 ]
[-0.80632919 0.93928123 -0.97309881 0.99996096 0.97433066]]
Y
[ 0.9995454  0.99339807 -0.99998379 0.99919224 -0.98379493]
-0.06013332 0.4030143  0.02884481 -0.29437575 -0.85681593]
0.99406189 0.95815992 -0.99768937 0.98646194 -0.91752487]
0.

1
[
[
[
[ 95047355 -0.51205158 -0.27763969 0.83108062 0.81631833]]


https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn

Variable-Length Input Sequences in Tensorflow

e Sentences, video, audio, ...
e Parameter sequence lengthindynamic rnn() represents the lenghts of
input vector.

e Outputs of RNN are zero vectors for every time step past the input sequence
length.

seq length = tf.placeholder(tf.int32, [None])

6Q£puts, states = tf.nn.dynamic rnn(basic cell, X, dtype=tf.float32,
sequence length=seq length)



Initialization of sequence_1length

In [3]: X batch = np.array([
# step 0 step 1
[fe, 1, 21, [9, 8, 711, # instance 0
[[3, 4, 5], [0, O, O]], # instance 1 (padded with a zero vector)
[[6, 7, 8], [6, 5, 4]], # instance 2
[re, o, 11, 3, 2, 111, # instance 3
1)

seq length batch = np.array([2, 1, 2, 2])



Variable-Length Output Sequences in Tensorflow

e Qutput length is known.
= Solve similarly aswith output sequences.

= |gnore every output past the length of output sequence.

e Qutput length is unknown.
= Generate EOS (end-of-sequence) token.
= |gnore every output past the EOS token.



Training RNN in Tensorflow

e Backpropagation Through Time (BPTT)
= Forward pass
= Compute cost function C(Yy, Yy, ..., Y, 1,Y,).
= Propagate gradient of cost function through unrolled network.
» Update model parameters using the gradients computed during BPTT.



MNIST

e Dataset of handwritten digits [0-9]

e 28x28 px
e Grayscale
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In [ ]:

# source https://github.com/ageron/handson-ml

n steps = 28
n_inputs = 28
n_neurons = 150
n outputs = 10

learning rate = 0.001

X
y

tf.placeholder(tf.float32, [None, n steps, n _inputs])
tf.placeholder(tf.int32, [None])

basic cell = tf.contrib.rnn.BasicRNNCell(num units=n_neurons)

# states = final outputs, after n steps = 28
# outputs = outputs at every time step => 28 outputs
outputs, states = tf.nn.dynamic rnn(basic cell, X, dtype=tf.float32)



In [20]: # source https://github.com/ageron/handson-ml
# states variable contains state of RNN cell after n steps = 28
logits = tf.layers.dense(states, n outputs)

xentropy = tf.nn.sparse softmax cross entropy with logits(labels=y, logits=logits)
loss = tf.reduce mean(xentropy)

optimizer = tf.train.AdamOptimizer(learning rate=learning rate)
training op = optimizer.minimize(loss)

correct = tf.nn.in top k(logits, y, 1) # only one correct output
accuracy = tf.reduce mean(tf.cast(correct, tf.float32))

init = tf.global variables initializer()



In [2]: # source https://github.com/ageron/handson-ml
n_epochs 100
batch size 150

with tf.Session() as sess:
init.run()
for epoch in range(n epochs):
for iteration in range(mnist.train.num_examples // batch size):
X batch, y batch = mnist.train.next batch(batch size)
X batch = X batch.reshape((-1, n steps, n inputs)) # 150, 28, 28
sess.run(training op, feed dict={X: X batch, y: y batch})

acc _train = accuracy.eval(feed dict={X: X batch, y: y batch})
acc_test = accuracy.eval(feed dict={X: X test, y: y test})
#print(epoch, "Train accuracy:", acc train, "Test accuracy:", acc test)

97 Train accuracy: 1.0 Test accuracy: 0.9809
98 Train accuracy: 0.986667 Test accuracy: 0.9761
99 Train accuracy: 0.986667 Test accuracy: 0.9769



Deep RNN

e Stack of multiple layers of cells.
e tf.contrib.rnn.MultiRNNCell

Y1 Yt Y1 - -

w1 Ty Tysl - -


https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell

Implementation of deep RNN in Tensorflow

basic cell = tf.contrib.rnn.BasicRNNCell(num units=n_neurons)

multi layer cell = tf.contrib.rnn.MultiRNNCell([basic cell] * n layers)
outputs, states = tf.nn.dynamic rnn(multi layer cell, X, dtype=tf.float32)



Bidirectional Recurrent Neural Networks



Dropout

tf.contrib.rnn.DropoutWrapper applies dropout during both training and testing phase!

Solution

e Create own wrapper.
e Create two graphs;

one for testing.

one for training,

’
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(b) After applying dropout.

(a) Standard Neural Net


https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/DropoutWrapper

Dropout with two graphs

keep prob = 0.5
cell = tf.contrib.rnn.BasicRNNCell(num units=n neurons)
if is training:
cell = tf.contrib.rnn.DropoutWrapper(cell, input keep prob=keep prob)

with tf.Session() as sess:
if is training:
init.run()
for iteration in range(n iterations):
# train the model
save path = saver.save(sess, "model.ckpt")
else:
saver.restore(sess, "model.ckpt")
# use the model



RNN problems

With long input sequences RNN suffers from several problems.

Vanishing/Exploding gradients
Non-convergance

Memory of the first inputs fade away
Training of long sequences is slow

Partial solutions

e Good parameter initialization (weights initialized as identity matrix)

e Nonsaturating activation functions (e.g., ReLU)

e Batch Normalization

e Gradient Clipping

e Faster optimizers

e Truncated Backpropagation Through Time => model cannot learn long-term
dependencies.



LSTM Cell

* Long Short-Term Memory, S. Hochreiter and J. Schmidhuber (1997)
e Same inputs and outputs as basic RNN cell, but state is split.
e Faster convergence.
e Detect long-term dependencies in data.
e 4different fully connected layers
e 3gates (learn what to store in the long-term state, what to throw away, and
what to read from it)
= |nput
= Forget
= Qutput
e 2states
= short-term
= |ong-term

e Tensorflow tf.contrib.rnn.BasicLSTMCell
e Keras keras.layers.recurrent.LSTM



http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735#.WIxuWvErJnw
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell
https://keras.io/layers/recurrent/#lstm

Visualization of LSTM cell
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Peephole Connections

e Recurrent Nets that Time and Count, F. Gers and J. Schmidhuber (2000)
e |nLSTM gate controllers utilize only previous state and current input.
e Peephole connections allow them to use ("peep") long-term state as well.
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ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

Gated Recurrent Unit Cell (GRU)

e |earning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation, K. Cho et al. (2014)
e Simplified version of LSTM cell
e Single state vector
e Gates (reset and update gate)
e Single gate controller (instead of input and forget gate)
= 1 =>theinput gateis open, the forget gate is closed
= O0=>theinputgate is closed, the forget gate is open

e Tensorflow tf.contrib.rnn.GRUCell
e Keras keras.layers.recurrent. GRU



https://arxiv.org/abs/1406.1078
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUCell
https://keras.io/layers/recurrent/#gru

Visualization of GRU Cell
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RNN usage and Examples

e Machine Translation
Automatic Summarization
Image/Video Captioning
Sentiment Analysis



Sum Binary Numbers

e Inspired by Neural Networks for Machine Learning lecture, (Geoffrey Hinton)
e Jupyter notebook with Tensorflow (martinkersner)

1

= O QO -

1 0 O
+ 1 1 1
0O 1 1

1
1
1 0

Tips

e Make sure you start to feed from the least significant bit :)
e Don't randomly generate training data.


https://www.youtube.com/watch?v=bVGdxHgxG34&t=1s
https://github.com/martinkersner/rnn-meetup/blob/master/sum-binary-numbers.ipynb

Character-Level Text Generation

* Blog post (Andrej Karpathy)
e Source code (Justin Johnson)

Multilayer recurrent neural network language model with dropout regularization.
Softmax on the top.

Arguments of LanguageModel:

e idx to token:Atable giving the vocabulary for the language model, mapping
integer ids to string tokens.

e model type:"Istm"or "rnn"

e wordvec size:Dimension for word vector embeddings

e rnn_size:Hidden state size for RNNs

e num_layers: Number of RNN layers to use

e dropout: Number between 0 and 1 giving dropout strength after each RNN
layer


http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/jcjohnson/torch-rnn
https://github.com/jcjohnson/torch-rnn/blob/master/doc/modules.md#languagemodel

Latex generation

For @, -, ,, where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=Uxx Uxx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xp U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 77 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U=|JU; x5, U:
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that O ; is a scheme where x,z’, 8" € S’ such that Ox o = O, _, is
separated. By Algebra, Lemma 77 we can define a map of complexes GLg/ (2" /8")
O

and we win.

To prove study we see that F|y is a covering of A, and 7; is an object of Fx/s for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M* = T* @gpuc(ty s, — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 77 ¢ (Sch/S) rppy

and

V =T(S,0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. O
The result for prove any open covering follows from the less of Example ?7. It may
replace S by Xepaces étate Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ?7. Namely, by Lemma 77 we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) = T(X,0x.0y)-

When in this case of to show that @ — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T' is connected with residue fields of 5. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [],_, ., Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.
The following lemma surjective restrocomposes of this implies that F., = F,, =
Fx,..00
Lemma 0.2. Let X be a locally Noctherian scheme over S, E = Fyg. Set T =
Jh CT,. Since I" C I" are nonzero over iy < p is a subset of T, 00 Ay works.
Lemma 0.3. In Situation ??. Hence we may assume q' = 0.
Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma 77 we see that

D(Ox/) = Ox(D)

where K is an F-algebra where 4,4, is a scheme over 5. a




C code generation

/*
* Increment the size file of the new incorrect UI FILTER group information
* of the size generatively.

*/
static int indicate policy(void)
{
int error;
if (fd == MARN EPT) {
/*
* The kernel blank will coeld it to userspace.
*/
if (ss->segment < mem total)
unblock graph and set blocked();
else
ret = 1;
goto bail;
}

segaddr = in SB(in.addr);
selector = seqg / 16;
setup works = true;
for (i = 0; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;
}

}

rw->name = "Getjbbregs";

bprm self clearl(&iv->version);

regs->new = blocks[(BPF STATS << info->historidac)] | PFMR CLOBATHINC SECONDS << 1
2;

return segtable;

}



Visualization of predictions
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Bible generation

* Bible source

e 858,195 words
e torch-rnn

e 50epochs

Examples

e Genesis 39:2 And the LORD was with Joseph, and he was a prosperous man; and

he was in the house of his master the Egyptian.

e Numbers 15:41 | am the LORD your God, which brought you out of the land of
Egypt, to be your God: | am the LORD your God.

e Revelation 22:13 | am Alpha and Omega, the beginning and the end, the first and

the last.


http://www.truth.info/download/bible.htm
https://github.com/jcjohnson/torch-rnn

Generated text

e Daniel 7:3 Hear now thine hand shall make him all that | will live from an
atonement of his three forth.

e Chronicles 10:22 Then he searched in the land of Abram the Jedaliah, and the
Egyptian, and foods of Jerusalem doth oil.

e Kings 14:17 And their herds of the holy bones, which | shall deliver juspiah of
God upon the LORD, that he had sold the destroying of Jerusalem.

thine = yours

atonement = reconciliation

doth = archaic third person singular present of do

juspiah does not exist



QA bADblI tasks

* https://research.fb.com/downloads/babi/
e Synthetic dataset of 20 different tasks for testing text understanding and

reasoning.

Example of task with two supporting facts (QA2):

1 Mary got the milk there.

2 John moved to the bedroom.

3 Sandra went back to the kitchen.
4 Mary travelled to the hallway.

5 Where is the milk? hallway 1 4


https://research.fb.com/downloads/babi/

Question Answering Solution Using Keras

http://smerity.com/articles/2015/keras ga.html

Following information are always related to Two Supporting Facts (QA2) which can be
found in tasks_1-20_v1-2/en/qa2two-supporting-facts[train|test].txt.

e QA2 subdataset contains 1,000 traing and 1,000 testing samples.
e The length of stories and questions differ.
e Test accuracy 31 %, knowing possible answers (6) accuracy of random
predictionis 16 %
e Towards Al-Complete Question Answering: A Set of Prerequisite Toy Tasks, J.
Weston et al. (2015)
= Weakly supervised LSTM, 20 %



http://smerity.com/articles/2015/keras_qa.html
https://arxiv.org/abs/1502.05698

Data Preprocessing

(# story
['Mary', 'got', 'the', 'milk', 'there', '.',
'John', 'moved', 'to', 'the', 'bedroom', '.‘',
'Sandra', 'went', 'back', 'to', 'the', 'kitchen', '.',
'Mary', 'travelled', 'to', 'the', 'hallway', '.'],

# question
[ 'Where', 'is', 'the', 'milk', '?'],
# answer

"hallway')



Word vocabulary

Only 35 (36) words!
[*.*, '?', 'Daniel', 'John', 'Mary', 'Sandra', 'Where', ‘'apple', 'back', 'bathroom',
‘bedroom', ‘'discarded', ‘'down', ‘'dropped', 'football', 'garden', 'got', 'grabbed',
"hallway', 'is', 'journeyed', 'kitchen', 'left', 'milk', 'moved',6 'office',

'picked', 'put', 'the', 'there', 'to', 'took', 'travelled', 'up', 'went']

Conversion stories to vectors

# pre-padded with zeros
[0 ... 517292430 1 425312911 1 635 9312922 1 5333129 19 1]



Applied RNN models

Following models can be applied to all bAbl tasks, but have to be trained separately for
each task.



Model #1 (August 5, 2015)

sentrnn = Sequential()

sentrnn.add(Embedding(vocab size, EMBED HIDDEN SIZE, mask zero=True))
sentrnn.add (RNN(EMBED HIDDEN SIZE, SENT HIDDEN SIZE, return sequences=False))

grnn = Sequential()
grnn.add(Embedding(vocab size, EMBED HIDDEN SIZE))
grnn.add (RNN(EMBED HIDDEN SIZE, QUERY HIDDEN SIZE, return sequences=False))

model = Sequential()
model.add(Merge([sentrnn, qrnn], mode='concat'))
model.add(Dense(SENT HIDDEN SIZE + QUERY HIDDEN SIZE, vocab size, activation='softma

x"'))



Architecture

Story Query
Words
Y Y Y Y Y Y Y Y Y Y
Word Vectors
Y Y Y Y Y Y Y Y Y Y
Y

Merged output (story | query)




Model #2

e keras.layers.add sum tensors with same dimensions.
e keras.layers.core.Dropout rate: float between O and 1. Fraction of the input
units to drop.

sentence = layers.Input(shape=(story maxlen,), dtype='int32')
encoded sentence = layers.Embedding(vocab size, EMBED HIDDEN SIZE) (sentence)
encoded sentence = layers.Dropout(0.3) (encoded sentence)

question = layers.Input(shape=(query maxlen,), dtype='int32')

encoded question = layers.Embedding(vocab size, EMBED HIDDEN SIZE) (question)
encoded question = layers.Dropout(0.3)(encoded question)

encoded question = RNN(EMBED HIDDEN SIZE)(encoded question)

encoded question layers.RepeatVector(story maxlen) (encoded question)

merged = layers.add([encoded sentence, encoded question])
merged = RNN(EMBED HIDDEN SIZE) (merged)
merged = layers.Dropout(0.3) (merged)

preds = layers.Dense(vocab size, activation='softmax') (merged)


https://keras.io/layers/merge/#add
https://keras.io/layers/core/#dropout

Handwriting Generation

* Generating Sequences With Recurrent Neural Networks, A. Graves, 2015
e Source code
e Onlinedemo

WMW A gprec WLMM/;O
g@ﬂd{ M;p@;ﬂ} Jnkﬂ“}\ﬁemga :H{,Ll‘ﬁ{,{f{)

5‘50%(/ wu& Mu‘df&ﬂw\ce %@W



https://arxiv.org/abs/1308.0850
https://github.com/szcom/rnnlib
https://www.cs.toronto.edu/~graves/handwriting.cgi

Network Visualization

e Window layer as discrete convolution with a mixture of K Gaussian functions.
o Pr(x;|y;_1) is amultinomial distribution.

Outputs

Hidden 2

Window

Hidden 1

Inputs

Characters




Udacity challenge: Prediction of steering angles

e Causal predictions = Only past frames are used to predict the future steering
decisions.

e Blog post about winning solutions

e Source code for all winning solutions

1. The first place, Team Komanda solution

e Mapping from sequences of images to sequences of steering angle
measurements.
e Applied 3D convolution on input image sequences.
e Then two other layers, LSTM and a simple RNN, respectively.
e The predicted angle, torque and speed serve as the input to the next
timestep.
2. The third place, Team Chauffeur solution

e Utilized CNN for feature extraction.
e Cropped the top of network in order to get 3,000 features.
e Those features used as input to LSTM.


https://medium.com/udacity/teaching-a-machine-to-steer-a-car-d73217f2492c
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models
https://github.com/udacity/self-driving-car/blob/master/steering-models/community-models/komanda/solution-komanda.ipynb
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur

A€tual = -0.02793, Predicted = -0.00610




Pixel RNN

* Pixel Recurrent Neural Networks, A. Oord et al. (2016)

* |Image inpainting, deblurring, generation

e The network scans the image one row at a time and one pixel at a time within
each row. For each pixel it predicts the conditional distribution over the possible
pixel values given the scanned context.

e Pixels represented as discrete values using a multinomial distribution
implemented with a simple softmax layer.

e 12 LSTM layers with residual connections.

occluded completions original



https://arxiv.org/abs/1601.06759

