
Recurrent Neural Networks

Seoul AI Meetup, August 5

Martin Kersner, m.kersner@gmail.com

mailto:m.kersner@gmail.com

References

Books

Hands-On Machine Learning with Scikit-Learn and Tensor�ow (Chapter 14.
Recurrent Neural Networks)

Deep Learning Book (Chapter 10: Sequence Modeling: Reccurent and Recursive
Nets)

https://www.safaribooksonline.com
https://github.com/ageron/handson-ml

http://www.deeplearningbook.org/
https://github.com/HFTrader/DeepLearningBook

https://www.safaribooksonline.com/
https://github.com/ageron/handson-ml
http://www.deeplearningbook.org/
https://github.com/HFTrader/DeepLearningBook

Videos

CS231n Lecture 10 - Recurrent Neural Networks, Image Captioning, LSTM
(Andrej Karpathy)
Lecture 8: Recurrent Neural Networks and Language Models (Richard Socher)
Deep Learning Summer School 2016, Recurrent Neural Networks (Yoshua
Bengio)
Ch 10: Recurrent/Recursive Nets, DeepLearning Textbook Study Group
(Jeremy Howard)
MIT 6.S094: Recurrent Neural Networks for Steering Through Time (Lex
Fridman)

https://www.youtube.com/watch?v=yCC09vCHzF8&t=1s
https://www.youtube.com/watch?v=Keqep_PKrY8
http://videolectures.net/deeplearning2016_bengio_neural_networks/
https://www.youtube.com/watch?v=o2QuErsWp6k
https://www.youtube.com/watch?v=nFTQ7kHQWtc

Feed Forward Neural Networks

Feed Forward Neural Networks has following limitations.

Inputs and outputs have �xed size.
Assume independence between input data.

Recurrent Neural Networks (RNN)

RNN operate over sequences of data.
Sequences in the inputs.
Sequences in the outputs.
Sequences in both inputs and outputs.

Weights and biases are shared over time.

Left: Recurrent neural network with one neuron in cell.

Right: Unfolded (= unrolled) recurrent neural network with one neuron in cell.

Implementation of single RNN cell
x represents input data [batch_size, n_input_features]

h represents hidden state [batch_size, n_neurons]

W_xh weights applied to input data [n_input_features, n_neurons]

W_hh weights of hidden state [n_neurons, n_neurons]

W_hy weights for output [n_neurons, n_outputs]

activation function tanh squashes data in between [-1, 1]

h = np.tanh(np.dot(x, W_xh) + np.dot(h, W_hh))

same as expression above

#h = np.tanh(np.dot(np.hstack((x, h)), np.vstack((W_xh, W_hh))))

prediction at current time

y = np.dot(h, W_hy)

Layer of Recurrent Neurons

Connections between

input and hidden layer,
hidden layer in time and hidden layer in time and
hidden layer and output layer

are fully connected.

ti ti+1

Left: Recurrent neural network with cell with 5 neurons.

Right: Unfolded (= unrolled) recurrent neural network with 5 neurons.

Memory Cell

Simple recurrent neuron or layer of recurrent neurons.
Memory cell preserves state across time steps.

Di�erent inputs and output in RNN architectures

Vector to Vector (Feed Forward Neural Network)
Vector to Sequence (e.g. Image Captioning)
Sequence to Vector (e.g. Sentiment Analysis)
Sequence to Sequence (e.g. Machine Translation)
Synced Sequence to Sequence (e.g. Video Captioning)

Building RNN in Tensor�ow

1. Manully
2. static_rnn()

3. dynamic_rnn()

Building RNN manually

In [2]:

In [5]:

n_features = 3

n_neurons = 5

n_steps = 2

batch of size 4 for two time steps

X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t = 0

X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t = 1

In [19]: # source https://github.com/ageron/handson-ml

placeholders for input data at two time steps

X0 = tf.placeholder(tf.float32, [None, n_features])

X1 = tf.placeholder(tf.float32, [None, n_features])

weight for input data to cell connection

Wx = tf.Variable(tf.random_normal(shape=[n_features, n_neurons], dtype=tf.float32))

weight for recurrent connection (t-1 => t)

Wy = tf.Variable(tf.random_normal(shape=[n_neurons, n_neurons], dtype=tf.float32))

bias

b = tf.Variable(tf.zeros([1, n_neurons], dtype=tf.float32))

tf.matmul(X0, Wx) : [None, n_features] * [n_features, n_neurons] = [None, n_neuron

s]

Y0 = tf.tanh(tf.matmul(X0, Wx) + b)

tf.matmul(Y0, Wy) : [None, n_neurons] * [n_neurons, n_neurons] = [None, n_neuron

s]

tf.matmul(X1, Wx) : [None, n_features] * [n_neurons, n_neurons] = [None, n_neuron

s]

b : [1, n_neurons]

Y1 = tf.tanh(tf.matmul(Y0, Wy) + tf.matmul(X1, Wx) + b)

In [21]:

In [22]:

def process_batches(X0_batch, X1_batch):

 init = tf.global_variables_initializer()

 with tf.Session() as sess:

 init.run()

 Y0_val, Y1_val = sess.run([Y0, Y1], feed_dict={X0: X0_batch, X1: X1_batch})

 print("Y0\n", Y0_val)

 print("\nY1\n", Y1_val)

process_batches(X0_batch, X1_batch)

Y0

 [[-0.0664006 0.96257669 0.68105787 0.70918542 -0.89821595]

 [0.9977755 -0.71978885 -0.99657625 0.9673925 -0.99989718]

 [0.99999774 -0.99898815 -0.99999893 0.99677622 -0.99999988]

 [1. -1. -1. -0.99818915 0.99950868]]

Y1

 [[1. -1. -1. 0.40200216 -1.]

 [-0.12210433 0.62805319 0.96718419 -0.99371207 -0.25839335]

 [0.99999827 -0.9999994 -0.9999975 -0.85943311 -0.9999879]

 [0.99928284 -0.99999815 -0.99990582 0.98579615 -0.92205751]]

Building RNN using static_rnn()

 creates one cell per time step.
Each input placeholder (X0, X1) have to be manually de�ned.

In [24]:

tf.contrib.rnn.BasicRNNCell
tf.nn.static_rnn

source https://github.com/ageron/handson-ml

X0 = tf.placeholder(tf.float32, [None, n_features])

X1 = tf.placeholder(tf.float32, [None, n_features])

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

output_seqs, states = tf.nn.static_rnn(basic_cell, [X0, X1], dtype=tf.float32)

Y0, Y1 = output_seqs

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicRNNCell
https://www.tensorflow.org/api_docs/python/tf/nn/static_rnn

static_rnn() output

In [25]: process_batches(X0_batch, X1_batch)

Y0

 [[0.30741334 -0.32884315 -0.65428472 -0.93850589 0.52089024]

 [0.99122757 -0.95425421 -0.75180793 -0.99952078 0.98202348]

 [0.99992681 -0.99783254 -0.82473528 -0.9999963 0.99947774]

 [0.99677098 -0.68750614 0.84199691 0.93039107 0.8120684]]

Y1

 [[0.99998885 -0.99976051 -0.06679298 -0.99998039 0.99982214]

 [-0.65249437 -0.51520866 -0.37968954 -0.59225935 -0.08968385]

 [0.99862403 -0.99715197 -0.03308626 -0.99915648 0.99329019]

 [0.99681675 -0.95981938 0.39660636 -0.83076048 0.79671967]]

static_rnn() with single input placeholder

In [8]: # source https://github.com/ageron/handson-ml

X = tf.placeholder(tf.float32, [None, n_steps, n_features])

X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

output_seqs, states = tf.nn.static_rnn(basic_cell, X_seqs, dtype=tf.float32)

outputs = tf.transpose(tf.stack(output_seqs), perm=[1, 0, 2])

In [13]: def process_batches2(X0_batch, X1_batch):

 # source https://github.com/ageron/handson-ml

 X0_batch_tmp = X0_batch[:, np.newaxis, :]

 X1_batch_tmp = X1_batch[:, np.newaxis, :]

 X_batch = np.concatenate((X0_batch_tmp, X1_batch_tmp), axis=1)

 init = tf.global_variables_initializer()

 with tf.Session() as sess:

 init.run()

 outputs_val = outputs.eval(feed_dict={X: X_batch})

 # Y0 output at t = 0

 # Y1 output at t = 0

 print("Y0\n", np.transpose(outputs_val, axes=[1, 0, 2])[0])

 print("\nY1\n", np.transpose(outputs_val, axes=[1, 0, 2])[1])

In [14]: process_batches2(X0_batch, X1_batch)

Y0

 [[-0.45652324 -0.68064123 0.40938237 0.63104504 -0.45732826]

 [-0.80015349 -0.99218267 0.78177971 0.9971031 -0.99646091]

 [-0.93605185 -0.99983788 0.93088669 0.99998152 -0.99998295]

 [0.99273688 -0.99819332 -0.55543643 0.9989031 -0.9953323]]

Y1

 [[-0.94288003 -0.99988687 0.94055814 0.99999851 -0.9999997]

 [-0.63711601 0.11300932 0.5798437 0.43105593 -0.63716984]

 [-0.9165386 -0.99456042 0.89605415 0.99987197 -0.99997509]

 [-0.02746334 -0.73191994 0.7827872 0.95256817 -0.97817713]]

Building RNN using dynamic_rnn()

No need to unstack, stack and transpose!
Input [None, n_steps, n_features].

Output [None, n_steps, n_neurons]

In [46]:

tf.nn.dynamic_rnn

source https://github.com/ageron/handson-ml

X = tf.placeholder(tf.float32, [None, n_steps, n_features])

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

process_batches2(X0_batch, X1_batch)

Y0

 [[0.80872238 -0.52312446 -0.6716494 -0.69762248 -0.54384488]

 [0.99547106 -0.02155113 -0.99482894 0.17964774 -0.83173698]

 [0.99990267 0.49111056 -0.9999314 0.8413834 -0.9444679]

 [-0.80632919 0.93928123 -0.97309881 0.99996096 0.97433066]]

Y1

 [[0.9995454 0.99339807 -0.99998379 0.99919224 -0.98379493]

 [-0.06013332 0.4030143 0.02884481 -0.29437575 -0.85681593]

 [0.99406189 0.95815992 -0.99768937 0.98646194 -0.91752487]

 [0.95047355 -0.51205158 -0.27763969 0.83108062 0.81631833]]

https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn

Variable-Length Input Sequences in Tensor�ow

Sentences, video, audio, ...
Parameter sequence_length in dynamic_rnn() represents the lenghts of

input vector.
Outputs of RNN are zero vectors for every time step past the input sequence
length.

seq_length = tf.placeholder(tf.int32, [None])

...

outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,

 sequence_length=seq_length)

Initialization of sequence_length

In [3]: X_batch = np.array([

 # step 0 step 1

 [[0, 1, 2], [9, 8, 7]], # instance 0

 [[3, 4, 5], [0, 0, 0]], # instance 1 (padded with a zero vector)

 [[6, 7, 8], [6, 5, 4]], # instance 2

 [[9, 0, 1], [3, 2, 1]], # instance 3

])

seq_length_batch = np.array([2, 1, 2, 2])

Variable-Length Output Sequences in Tensor�ow

Output length is known.
Solve similarly as with output_sequences.

Ignore every output past the length of output sequence.

Output length is unknown.
Generate EOS (end-of-sequence) token.
Ignore every output past the EOS token.

Training RNN in Tensor�ow

Backpropagation Through Time (BPTT)
Forward pass
Compute cost function .

Propagate gradient of cost function through unrolled network.
Update model parameters using the gradients computed during BPTT.

C(, , . . . , ,)Y0 Y1 Yn−1 Yn

MNIST

Dataset of handwritten digits [0-9]
28x28 px
Grayscale

In []: # source https://github.com/ageron/handson-ml

n_steps = 28

n_inputs = 28

n_neurons = 150

n_outputs = 10

learning_rate = 0.001

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])

y = tf.placeholder(tf.int32, [None])

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

states = final outputs, after n_steps = 28

outputs = outputs at every time step => 28 outputs

outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

In [20]: # source https://github.com/ageron/handson-ml

states variable contains state of RNN cell after n_steps = 28

logits = tf.layers.dense(states, n_outputs)

xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)

loss = tf.reduce_mean(xentropy)

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

training_op = optimizer.minimize(loss)

correct = tf.nn.in_top_k(logits, y, 1) # only one correct output

accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

init = tf.global_variables_initializer()

In [2]: # source https://github.com/ageron/handson-ml

n_epochs = 100

batch_size = 150

with tf.Session() as sess:

 init.run()

 for epoch in range(n_epochs):

 for iteration in range(mnist.train.num_examples // batch_size):

 X_batch, y_batch = mnist.train.next_batch(batch_size)

 X_batch = X_batch.reshape((-1, n_steps, n_inputs)) # 150, 28, 28

 sess.run(training_op, feed_dict={X: X_batch, y: y_batch})

 acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})

 acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test})

 #print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

...

97 Train accuracy: 1.0 Test accuracy: 0.9809

98 Train accuracy: 0.986667 Test accuracy: 0.9761

99 Train accuracy: 0.986667 Test accuracy: 0.9769

Deep RNN

Stack of multiple layers of cells.
tf.contrib.rnn.MultiRNNCell

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/MultiRNNCell

Implementation of deep RNN in Tensor�ow
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

multi_layer_cell = tf.contrib.rnn.MultiRNNCell([basic_cell] * n_layers)

outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)

Bidirectional Recurrent Neural Networks

Dropout

 applies dropout during both training and testing phase!

Solution

Create own wrapper.
Create two graphs; one for training, one for testing.

tf.contrib.rnn.DropoutWrapper

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/DropoutWrapper

Dropout with two graphs
keep_prob = 0.5

cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

if is_training:

 cell = tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=keep_prob)

...

with tf.Session() as sess:

 if is_training:

 init.run()

 for iteration in range(n_iterations):

 # train the model

 save_path = saver.save(sess, "model.ckpt")

 else:

 saver.restore(sess, "model.ckpt")

 # use the model

RNN problems

With long input sequences RNN suffers from several problems.

Vanishing/Exploding gradients
Non-convergance
Memory of the �rst inputs fade away
Training of long sequences is slow

Partial solutions

Good parameter initialization (weights initialized as identity matrix)
Nonsaturating activation functions (e.g., ReLU)
Batch Normalization
Gradient Clipping
Faster optimizers
Truncated Backpropagation Through Time => model cannot learn long-term
dependencies.

LSTM Cell

Same inputs and outputs as basic RNN cell, but state is split.
Faster convergence.
Detect long-term dependencies in data.
4 different fully connected layers
3 gates (learn what to store in the long-term state, what to throw away, and
what to read from it)

Input
Forget
Output

2 states
short-term
long-term

Tensor�ow
Keras

Long Short-Term Memory, S. Hochreiter and J. Schmidhuber (1997)

tf.contrib.rnn.BasicLSTMCell
keras.layers.recurrent.LSTM

http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735#.WIxuWvErJnw
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell
https://keras.io/layers/recurrent/#lstm

Visualization of LSTM cell

Peephole Connections

In LSTM gate controllers utilize only previous state and current input.
Peephole connections allow them to use ("peep") long-term state as well.

Recurrent Nets that Time and Count, F. Gers and J. Schmidhuber (2000)

ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf

Gated Recurrent Unit Cell (GRU)

Simpli�ed version of LSTM cell
Single state vector
Gates (reset and update gate)
Single gate controller (instead of input and forget gate)

1 => the input gate is open, the forget gate is closed
0 => the input gate is closed, the forget gate is open

Tensor�ow
Keras

Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation, K. Cho et al. (2014)

tf.contrib.rnn.GRUCell
keras.layers.recurrent.GRU

https://arxiv.org/abs/1406.1078
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/GRUCell
https://keras.io/layers/recurrent/#gru

Visualization of GRU Cell

RNN usage and Examples

Machine Translation
Automatic Summarization
Image/Video Captioning
Sentiment Analysis
...

Sum Binary Numbers

Inspired by

Tips

Make sure you start to feed from the least signi�cant bit :)
Don't randomly generate training data.

Neural Networks for Machine Learning lecture, (Geoffrey Hinton)
Jupyter notebook with Tensor�ow (martinkersner)

https://www.youtube.com/watch?v=bVGdxHgxG34&t=1s
https://github.com/martinkersner/rnn-meetup/blob/master/sum-binary-numbers.ipynb

Character-Level Text Generation

Multilayer recurrent neural network language model with dropout regularization.
Softmax on the top.

Arguments of :

idx_to_token: A table giving the vocabulary for the language model, mapping

integer ids to string tokens.
model_type: "lstm" or "rnn"

wordvec_size: Dimension for word vector embeddings

rnn_size: Hidden state size for RNNs

num_layers: Number of RNN layers to use

dropout: Number between 0 and 1 giving dropout strength after each RNN

layer

Blog post (Andrej Karpathy)
Source code (Justin Johnson)

LanguageModel

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://github.com/jcjohnson/torch-rnn
https://github.com/jcjohnson/torch-rnn/blob/master/doc/modules.md#languagemodel

Latex generation

C code generation
/*

 * Increment the size file of the new incorrect UI_FILTER group information

 * of the size generatively.

 */

static int indicate_policy(void)

{

 int error;

 if (fd == MARN_EPT) {

 /*

 * The kernel blank will coeld it to userspace.

 */

 if (ss->segment < mem_total)

 unblock_graph_and_set_blocked();

 else

 ret = 1;

 goto bail;

 }

 segaddr = in_SB(in.addr);

 selector = seg / 16;

 setup_works = true;

 for (i = 0; i < blocks; i++) {

 seq = buf[i++];

 bpf = bd->bd.next + i * search;

 if (fd) {

 current = blocked;

 }

 }

 rw->name = "Getjbbregs";

 bprm_self_clearl(&iv->version);

 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 1

2;

 return segtable;

}

Visualization of predictions

Bible generation

858,195 words

50 epochs

Examples

Genesis 39:2 And the LORD was with Joseph, and he was a prosperous man; and
he was in the house of his master the Egyptian.
Numbers 15:41 I am the LORD your God, which brought you out of the land of
Egypt, to be your God: I am the LORD your God.
Revelation 22:13 I am Alpha and Omega, the beginning and the end, the �rst and
the last.

Bible source

torch-rnn

http://www.truth.info/download/bible.htm
https://github.com/jcjohnson/torch-rnn

Generated text

Daniel 7:3 Hear now thine hand shall make him all that I will live from an
atonement of his three forth.
Chronicles 10:22 Then he searched in the land of Abram the Jedaliah, and the
Egyptian, and foods of Jerusalem doth oil.
Kings 14:17 And their herds of the holy bones, which I shall deliver juspiah of
God upon the LORD, that he had sold the destroying of Jerusalem.

thine = yours

atonement = reconciliation

doth = archaic third person singular present of do

juspiah does not exist

QA bAbI tasks

Synthetic dataset of 20 different tasks for testing text understanding and
reasoning.

Example of task with two supporting facts (QA2):

https://research.fb.com/downloads/babi/

1 Mary got the milk there.

2 John moved to the bedroom.

3 Sandra went back to the kitchen.

4 Mary travelled to the hallway.

5 Where is the milk? hallway 1 4

https://research.fb.com/downloads/babi/

Question Answering Solution Using Keras

Following information are always related to Two Supporting Facts (QA2) which can be
found in tasks_1-20_v1-2/en/qa2two-supporting-facts[train|test].txt.

QA2 subdataset contains 1,000 traing and 1,000 testing samples.
The length of stories and questions differ.
Test accuracy 31 %, knowing possible answers (6) accuracy of random
prediction is 16 %

Weakly supervised LSTM, 20 %

http://smerity.com/articles/2015/keras_qa.html

Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks, J.
Weston et al. (2015)

http://smerity.com/articles/2015/keras_qa.html
https://arxiv.org/abs/1502.05698

Data Preprocessing

(# story

 ['Mary', 'got', 'the', 'milk', 'there', '.',

 'John', 'moved', 'to', 'the', 'bedroom', '.',

 'Sandra', 'went', 'back', 'to', 'the', 'kitchen', '.',

 'Mary', 'travelled', 'to', 'the', 'hallway', '.'],

 # question

 ['Where', 'is', 'the', 'milk', '?'],

 # answer

 'hallway')

Word vocabulary

Only 35 (36) words!

Conversion stories to vectors

['.', '?', 'Daniel', 'John', 'Mary', 'Sandra', 'Where', 'apple', 'back', 'bathroom',

 'bedroom', 'discarded', 'down', 'dropped', 'football', 'garden', 'got', 'grabbed',

'hallway', 'is', 'journeyed', 'kitchen', 'left', 'milk', 'moved', 'office',

'picked', 'put', 'the', 'there', 'to', 'took', 'travelled', 'up', 'went']

pre-padded with zeros

[0 ... 5 17 29 24 30 1 4 25 31 29 11 1 6 35 9 31 29 22 1 5 33 31 29 19 1]

Applied RNN models

Following models can be applied to all bAbI tasks, but have to be trained separately for
each task.

Model #1 (August 5, 2015)

sentrnn = Sequential()

sentrnn.add(Embedding(vocab_size, EMBED_HIDDEN_SIZE, mask_zero=True))

sentrnn.add(RNN(EMBED_HIDDEN_SIZE, SENT_HIDDEN_SIZE, return_sequences=False))

qrnn = Sequential()

qrnn.add(Embedding(vocab_size, EMBED_HIDDEN_SIZE))

qrnn.add(RNN(EMBED_HIDDEN_SIZE, QUERY_HIDDEN_SIZE, return_sequences=False))

model = Sequential()

model.add(Merge([sentrnn, qrnn], mode='concat'))

model.add(Dense(SENT_HIDDEN_SIZE + QUERY_HIDDEN_SIZE, vocab_size, activation='softma

x'))

Architecture

Words

Word Vectors

RNN

Merged output (story | query)

Story Query

Model #2

 sum tensors with same dimensions.
 rate: �oat between 0 and 1. Fraction of the input

units to drop.

keras.layers.add
keras.layers.core.Dropout

sentence = layers.Input(shape=(story_maxlen,), dtype='int32')

encoded_sentence = layers.Embedding(vocab_size, EMBED_HIDDEN_SIZE)(sentence)

encoded_sentence = layers.Dropout(0.3)(encoded_sentence)

question = layers.Input(shape=(query_maxlen,), dtype='int32')

encoded_question = layers.Embedding(vocab_size, EMBED_HIDDEN_SIZE)(question)

encoded_question = layers.Dropout(0.3)(encoded_question)

encoded_question = RNN(EMBED_HIDDEN_SIZE)(encoded_question)

encoded_question = layers.RepeatVector(story_maxlen)(encoded_question)

merged = layers.add([encoded_sentence, encoded_question])

merged = RNN(EMBED_HIDDEN_SIZE)(merged)

merged = layers.Dropout(0.3)(merged)

preds = layers.Dense(vocab_size, activation='softmax')(merged)

https://keras.io/layers/merge/#add
https://keras.io/layers/core/#dropout

Handwriting Generation

Generating Sequences With Recurrent Neural Networks, A. Graves, 2015
Source code
Online demo

https://arxiv.org/abs/1308.0850
https://github.com/szcom/rnnlib
https://www.cs.toronto.edu/~graves/handwriting.cgi

Network Visualization

Window layer as discrete convolution with a mixture of K Gaussian functions.
 is a multinomial distribution.Pr(|)xt yt−1

Udacity challenge: Prediction of steering angles

Causal predictions = Only past frames are used to predict the future steering
decisions.

1. The �rst place,

Mapping from sequences of images to sequences of steering angle
measurements.
Applied 3D convolution on input image sequences.
Then two other layers, LSTM and a simple RNN, respectively.
The predicted angle, torque and speed serve as the input to the next
timestep.

2. The third place,

Utilized CNN for feature extraction.
Cropped the top of network in order to get 3,000 features.
Those features used as input to LSTM.

Blog post about winning solutions
Source code for all winning solutions

Team Komanda solution

Team Chauffeur solution

https://medium.com/udacity/teaching-a-machine-to-steer-a-car-d73217f2492c
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models
https://github.com/udacity/self-driving-car/blob/master/steering-models/community-models/komanda/solution-komanda.ipynb
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur

Pixel RNN

Image inpainting, deblurring, generation
The network scans the image one row at a time and one pixel at a time within
each row. For each pixel it predicts the conditional distribution over the possible
pixel values given the scanned context.
Pixels represented as discrete values using a multinomial distribution
implemented with a simple softmax layer.
12 LSTM layers with residual connections.

Pixel Recurrent Neural Networks, A. Oord et al. (2016)

https://arxiv.org/abs/1601.06759

