
Smart Contracts and 
Scalability
By Raj Thimmiah



What are smart contracts?
● Goals:

○ Autonomous
■ Able to take input and make outputs to other smart contracts/users

○ Reliable 
■ No downtime

○ Trustable
■ Don’t need to worry about the contract cheating you or doing something other than what 

the code specifies



How can we host or run these smart contracts?
● If we run them on a cloud server like AWS:

○ Need to trust AWS
○ Need to trust me (the person running code on the server)



How can we run smart contracts and trust the result?
● We all run the smart contract:

○ By running the smart contract we validate the result as well
○ If we all run same validation, any deviant showing a different result can be proved wrong



Issues
● Performance issues
● Not scalable in terms of

○ Computation
○ Storage

● Shows and stores all data publicly which wastes space



Computational Scaling
● How can we do work without parallelizing it?
● Answer:

○ Perform task on only a subset of the network



Truebit
● Task giver: has problem that they want solved
● Solver: computes this problem
● Verifier/Challenger: checks if the solver computes correctly 

There are forced errors that the solver is compelled economically to add, the 
challenger/verifier is rewarded for finding these and the solver is penalized if they 
don’t include these

Split task into steps, if a challenger disagrees on some section then the blockchain 
is used to check which person is the cheater

Checking for cheater is expensive so there is a penalty for the challenger if there 
is no issue and penalty on the solver if there is an issue



Enigma/MPC/Plasma



Where does the efficiency come from?
● Don’t need to have all nodes validate everything
● Can limit computation (based on the trust/reliability of the base blockchain) to 

a subset


