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Abstract

Given live streaming Bitcoin activity, we aim to forecast future Bitcoin prices so as to execute
profitable trades. We show that Bitcoin price data exhibit desirable properties such as stationarity
and mixing. Even so, some classical time series prediction methods that exploit this behavior, such
as ARIMA models, produce poor predictions and also lack a probabilistic interpretation. In light
of these limitations, we make two contributions: first, we introduce a theoretical framework for
predicting and trading ternary-state Bitcoin price changes, i.e. increase, decrease or no-change; and
second, using the framework, we present simple, scalable and real-time algorithms that achieve a
high return on average Bitcoin investment (e.g. 6-7x, 4-6x and 3-6x return on investments for tests
in 2014, 2015 and 2016), while consistently maintaining a high prediction accuracy (> 60-70%) and
respectable Sharpe Ratio (> 2.0). Furthermore, when trained on a period eight months earlier than
the test period, our algorithms performed nearly as well as they did when trained on recent data!
As an important contribution, we provide a justification for why it makes sense to use classification
algorithms in settings where the underlying time series is stationary and mixing.
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I The Results

Cumulative Profit: Model Comparison
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Il Why Trading Bitcoin?

Bitcoin Charts
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I Aim of the Article

B Forecasting Bitcoin price changes for algorithmic
trading.

B Make scalable and accurate forecasts in real-time,
given a live stream of time series data.
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I The Problem

B Prediction: For any time {, given the historical price
time series up to time t, predict the price for future
time instances, s=t + 1.

B Trading: For any time t, using current investment and
predictions, decide whether to buy new Bitcoins or
sell any of the Bitcoins that are in possession.
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Il Simple Trading Strategy

B Focus predictions accuracy. The trading strategy is
to demonstrate the utility of predictions.

B Trading Model:

buy, if h[t] = 0 & price is predicted to increase, with high confidence
d[t] = ¢ sell, if h[t] = 1 & price is predicted to decrease, with high confidence
hold, otherwise.

Where hft] = 1, if we are in possession of a Bitcoin at
time t and hft] = 0, otherwise.
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I Article Contributions

B Theoretical framework for time series analysis based:
stationarity and mixing.

B Simple, scalable, real-time algorithms for prediction
and trading that yield high prediction accuracy and
highly profitable returns on investment in Bitcoin.
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Il Stationary and Mixing Time Series

B A time series is said to be:

- Stationary if its joint probability distribution is time-
iInvariant.

« Mixing if the distribution at a specific time is primarily
dependent on the recent past.

B Classical time series regression algorithm : ARIMA

(AutoRegressive Integrated Moving Average) has
poor performances.

B Overcome this limitation with a new model.
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I Bitcoin Data

B OKCoin exchange using their APls. All prices are
reported in Chinese Yuans. The APls return lists of
bid[t] and ask([t] at the time {.

B Several months of data from the exchange in 2014,
2015 and 2016.

B Estimate of price:

p[t] = (max(bid[t]) + min(ask][]))/2
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I Stationarity and Mixing

B Tests reveal that the Bitcoin price time series is not
stationary.

B Let y[t] be the time series produced by the first-
differences:

ylt] = plt] — p[t — 1]

B The first-differences of the Bitcoin price time series is
stationary and mixing.
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I Classical Modeling: ARIMA

ARIMA (4,1,4) Predictions
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I Stationarity and Mixing

B Stationary and mixing suggest there exist a large
enough d such that:

P(yltl|y[—oo -t —1]) = P(ylt]ly[t —d : t —1])

B Stationary:

Plyltllylt —d :t —1]) = P(y[s]ly[s —d : s —1]), Vs

Fy(ylt —d:t—1]) =P(ylt] > Oly[t —d:t —1])
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I The Model

B The model:

’

-1, if y[t] < —40
zlt)=<1, ify[t] >0

0, otherwise.

\

B Define a 3-dimensional probability vector:
Qlt] = (P(zlt] = olylt —d :t—1]),0 € {-1,0,1})

Qlt) = F(ylt —d : t — 1))
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I Vethod

B [nterest is truly in this 3-dimensional.

B The problem effectively reduces to ternary-state
classification

B Generate training data as follows:

(xlt], ylt —d : t — 1))
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I Vethod

B The goal istolearn F () € [0, 1], using a classification
algorithm.

B Choice of classification algorithms:
« Random Forest (RF),
» Logistic Regression (LR) and
« Linear Discriminant Analysis (LDA).

B Learn the transition probability distribution function
P(x[t]|x[t—-d : t - 1]).
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I Vethod

B We require the model to produce a probability

associated with each prediction to give us a sense of
confidence in each individual prediction.

B Trading Model:
(0% if P*(2[t] = o*|hglt — 1]) > 7,

0, otherwise,
\

B Combining multiple predictions:

A A
Tol|t] = E Tqlt] X wy
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I Experiments and Results
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Figure 3: Cumulative Profit and Bitcoin Price in 2014, 2015, 2016 with d € 3,4, 5. ~ selected via validation.
Each time step represents 5s.

(Left): Training: 2/16/14 - 3/14/14, Validation: 3/15/14 - 3/31/14, Test: 4/1/14 - 6/11/14.
(Center): Training: 12/1/14 - 12/31/14, Validation: 1/1/15 - 1/15/15, Test: 1/16/15 - 3/31/15.
(Right): Training: 2/26/16 - 4/15/16, Validation: 4/16/16 - 5/15/16, Test: 5/16/16 - 9/15/16.
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I Quick Summary

B |Learning framework based on properties such as
stationarity and mixing.

B Limitations of classical time series methods like
the ARIMA models.

B Prediction accuracy near 70% with Classification
Algorithms.

B High return on average Bitcoin investment (e.g. 6-7x,
4-6x and 3-6x return on investments for tests in 2014,
2015 and 2016),
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