imbalanced-learn sampler

In []:

%matplotlib inline

In []:

%run samplel.py

Balancing issue

« difference of the number of samples in the different classes

* e.g. effect of training a linear SVM classifier with different level of class balancing
» decision function of the linear SVM is highly impacted
= with a greater imbalanced ratio, the decision function favor the majority class

In [1]:
samplel()
Linear SVC with y=Counter({2: 972, 1: 15, 0: 13}) Linear SVC with y=Counter({2: 932, 1: 55, 0: 13})
3
2
1
04
-1
-2
4 3 2 1 0 1 2 - -3 2 -1 0 1 2

Linear SVC with y=Counter({2: 694, 0: 202, 1: 104}) Linear SVC with y=Counter({1: 336, 0: 334, 2: 330})

Over-sampling

» generate new samples in the classes which are under-represented
= Random Sampling
» SMOTE(Synthetic Minority Oversampling Technique)
= ADASYN(Adaptive Synthetic)

In []:
original()
Linear SVC with y=Counter({2: 9345, 1: 523, 0: 132})
6
o o
o o %
o o
1]
o ’
C o -
L) g o o]
2 - ‘.""‘. B @
) e
& Ly °
- & a Q“ = @ = o
o)
: : » XA
ocp) ’: 4 & ’9.’ . 7
o o
ol ® 6 o °
3 4 : ' e e
&; i » . !
o
) o8 ©
—4
o
T T J T T T T T T
-3 -2 -1 0 1 2 3

RandomOverSampler

» generate new samples by randomly sampling with replacement the current availbale samples
» the augmented dataset should be used instead of original dataset to train a classfier

In []:

ramdomsample()

Decision function for RandomOverSampler

SMOTE

» from sample x;, a new sample x,,.,, will be generated considering its k neareast-neighbors
« A is arandom number in the range [0, 1]

Tpew = Tj + A X (xzi - mz)
« regular SMOTE: randomly pick-up all possible x;

In []:

oversample_algo()

3.7
@ Minority class
@& Majority class
@
3.6 4 []
® X;
[
35 4
L5
=
34 1
* Xnew
33 1 L
Xz
L
@
32 -
T T T T T 1
02 03 04 05 06 0.7
X1
In []:
df_smote()
Decision function for SMOTE Resampling using SMOTE
6l]
2]
34
oA
2
4]

ADASYN

» from sample x;, a new sample x,.,, will be generated considering its k neareast-neighbors
A is arandom number in the range [0, 1]

Tnew = Tj T A X (wzz - mz)
» number of samples generated form each x; is proportiaonal to the number of samples which are not

from the same class than x; in a given neighborhood
» focus on the samples which are difficult to classify with a nearest-neighbors rule

In []:
df_adasyn()

Decision function for ADASYN Resampling using ADASYN

74
-2

4]
-4

Unser-sampling

» Prototype generation:under-sampling by generating new samples
» Prototype selection: under-sampling by selecting existing samples

In []:

gen_original ()

Linear SVC with y=Counter({2: 4674, 1: 262, 0: 64})

Prototype generation

* generate a new set S' where |S'| < [S|and S' ¢ S
» ClusterCentroids

In []:

gen_undersample()

Linear SVC with y=Counter({2: 4674, 1: 262, 0: 64}) Decision function for ClusterCentroids Resampling using ClusterCentroids
o g
3 s,
L]
2 o, e : . o ©
©
“‘ o® eoe 4 o !
3
o & me A
] e ® o ge, o P20
C o ghiese
0) % 8 @
. . e o o9 Fo =]
o
oo goge
°, 8% °8°
-2 2% 7
S
@ o °
o
o
o
-4 o
o
-6
-2 4 [1

Prototype selection

» select samples from the original set S. Therefore, S' is defined such as |S'| < |S|and S' € S.

In []:

sel_undersample()

Linear SVC with y=Counter({2: 4674, 1: 262, 0: 64})

Decision function for RandoemUnderSampler

&

o

o

Techniques

» controlled under-sampling techniques

-3

=2

-1 0 1 2

= number of samples in S' is specified by the user

= NearMiss

o adds some heuristic rules(knn) to select samples

o version =1, 2, 3 (size of nn to consider to compute the average distance to the
minority point samples)

In []:

ex_nearmiss()

ing using

\dersampler

-2

-1

Original set Nearmiss 1
64 6 -
41 44
) ®
21 o L] 21 o <
) s ©
° e ? e
G v
o, o >2) oo, 0 - 5 -
04 o ” < e > 0 e® o
e ® = ®." ; .
° . 5 © > &
@ % a N y
_2 R o o —2 - - -
e °
) o
-4 A -4 A
—6 —6 -
S
" Nearmiss 2 " Nearmiss 3
4 A 44
o o
24 o © 7 @ ®
o © o ©
0 < v
5
[s 1278 - © ° o, « 9 °
04 °® - A 27 0 0® 2]
o, $ % M g $
) 5 ® 5
o o
21 © -2 o y
[°®
o <
-4 1 -4 1
_6 J _6 J
L S T A S S
e Class #0 Class #1 Removed samples

» cleaning under-sampling techniues
= don't allow specify the number of samples to have in each class
= TomeklLnks
o exist if the two samples are the nearest neighbors of each other

In [1]:

ex_tomek()

lustration of a Tomek link

357
= Minaority class
Majority class
30 Tomek link
25 4 —
204
s —
15 1 —
10 1 -
0.5 -
0o -
0.0 05 10 15 20 25 30 35

X1

Combination of over-and under-sampling

» generate noisy samples by interpolating new points between marginal outliers and inliers
» cleaning the resulted space obtained after over-sampling

= SMOTETomek : SMOTE -> Tomek

= SMOTEENN : SMOTE -> edited nearest-neighbours

In []:

ex_combi ()

using SMOTE

ing using SMOTEENN

Y =

-3

ing using SMOTETomek

Decision function for SMOTE

Decision function for SMOTEENN

Decision function for SMOTETomek

-2

-3

