imbalanced-learn sampler

In [ ]:

%matplotlib inline

In [ ]:

%run samplel.py

Balancing issue

« difference of the number of samples in the different classes

* e.g. effect of training a linear SVM classifier with different level of class balancing
» decision function of the linear SVM is highly impacted
= with a greater imbalanced ratio, the decision function favor the majority class

In [ 1]:
samplel()
Linear SVC with y=Counter({2: 972, 1: 15, 0: 13}) Linear SVC with y=Counter({2: 932, 1: 55, 0: 13})
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Linear SVC with y=Counter({2: 694, 0: 202, 1: 104}) Linear SVC with y=Counter({1: 336, 0: 334, 2: 330})




Over-sampling

» generate new samples in the classes which are under-represented
= Random Sampling
» SMOTE(Synthetic Minority Oversampling Technique)
= ADASYN(Adaptive Synthetic)

In [ ]:
original()
Linear SVC with y=Counter({2: 9345, 1: 523, 0: 132})
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RandomOverSampler

» generate new samples by randomly sampling with replacement the current availbale samples
» the augmented dataset should be used instead of original dataset to train a classfier

In [ ]:

ramdomsample()



Decision function for RandomOverSampler

SMOTE

» from sample x;, a new sample x,,.,, will be generated considering its k neareast-neighbors
« A is arandom number in the range [0, 1]

Tpew = Tj + A X (xzi - mz)
« regular SMOTE: randomly pick-up all possible x;

In [ ]:

oversample_algo()
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In [ ]:
df_smote()
Decision function for SMOTE Resampling using SMOTE
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ADASYN

» from sample x;, a new sample x,.,, will be generated considering its k neareast-neighbors
A is arandom number in the range [0, 1]

Tnew = Tj T A X (wzz - mz)
» number of samples generated form each x; is proportiaonal to the number of samples which are not

from the same class than x; in a given neighborhood
» focus on the samples which are difficult to classify with a nearest-neighbors rule

In [ ]:
df_adasyn()

Decision function for ADASYN Resampling using ADASYN
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Unser-sampling

» Prototype generation:under-sampling by generating new samples
» Prototype selection: under-sampling by selecting existing samples

In [ ]:

gen_original ()



Linear SVC with y=Counter({2: 4674, 1: 262, 0: 64})

Prototype generation

* generate a new set S' where |S'| < [S|and S' ¢ S
» ClusterCentroids

In [ ]:

gen_undersample()

Linear SVC with y=Counter({2: 4674, 1: 262, 0: 64}) Decision function for ClusterCentroids Resampling using ClusterCentroids
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Prototype selection

» select samples from the original set S. Therefore, S' is defined such as |S'| < |S|and S' € S.

In [ ]:

sel_undersample()



Linear SVC with y=Counter({2: 4674, 1: 262, 0: 64})

Decision function for RandoemUnderSampler
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Techniques

» controlled under-sampling techniques

-3

=2

-1 0 1 2

= number of samples in S' is specified by the user

= NearMiss

o adds some heuristic rules(knn) to select samples

o version =1, 2, 3 (size of nn to consider to compute the average distance to the
minority point samples)

In [ ]:

ex_nearmiss()

ing using

\dersampler
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» cleaning under-sampling techniues
= don't allow specify the number of samples to have in each class
= TomeklLnks
o exist if the two samples are the nearest neighbors of each other

In [ 1]:

ex_tomek()



lustration of a Tomek link
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Combination of over-and under-sampling

» generate noisy samples by interpolating new points between marginal outliers and inliers
» cleaning the resulted space obtained after over-sampling

= SMOTETomek : SMOTE -> Tomek

= SMOTEENN : SMOTE -> edited nearest-neighbours

In [ ]:

ex_combi ()






using SMOTE

ing using SMOTEENN

Y =

-3

ing using SMOTETomek

Decision function for SMOTE

Decision function for SMOTEENN

Decision function for SMOTETomek
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