imbalanced-learn sampler

In []:

%matplotlib inline

In []:

%run sample1.py

Balancing issue

- difference of the number of samples in the different classes
- e.g. effect of training a linear SVM classifier with different level of class balancing
 - decision function of the linear SVM is highly impacted
 - with a greater imbalanced ratio, the decision function favor the majority class

In []:

sample1()

Over-sampling

- generate new samples in the classes which are under-represented
 - Random Sampling
 - SMOTE(Synthetic Minority Oversampling Technique)
 - ADASYN(Adaptive Synthetic)

In []:

original()

RandomOverSampler

- generate new samples by randomly sampling with replacement the current availbale samples
- the augmented dataset should be used instead of original dataset to train a classfier

In []:

ramdomsample()

SMOTE

- from sample \boldsymbol{x}_i , a new sample \boldsymbol{x}_{new} will be generated considering its k neareast-neighbors
- λ is a random number in the range [0, 1]

$$x_{new} = x_i + \lambda imes (x_{zi} - x_i)$$

- regular SMOTE: randomly pick-up all possible \boldsymbol{x}_i

In []:

oversample_algo()

In []:
df_smote()

ADASYN

- from sample x_i , a new sample x_{new} will be generated considering its k neareast-neighbors
- λ is a random number in the range [0, 1]

$$x_{new} = x_i + \lambda imes (x_{zi} - x_i)$$

- number of samples generated form each x_i is proportiaonal to the number of samples which are not from the same class than x_i in a given neighborhood
- focus on the samples which are difficult to classify with a nearest-neighbors rule

In []:

df_adasyn()

Unser-sampling

- · Prototype generation:under-sampling by generating new samples
- · Prototype selection: under-sampling by selecting existing samples

In []:

gen_original()

Prototype generation

- generate a new set S' where |S'| < |S| and $|S'| \notin S$
- ClusterCentroids

In []:

gen_undersample()

Prototype selection

• select samples from the original set S. Therefore, S' is defined such as |S'| < |S| and |S'| < |S|.

In []:

sel_undersample()

Techniques

- controlled under-sampling techniques
 - number of samples in S' is specified by the user
 - NearMiss
 - adds some heuristic rules(knn) to select samples
 - version = 1, 2, 3 (size of nn to consider to compute the average distance to the minority point samples)

In []:

ex_nearmiss()

- cleaning under-sampling techniues
 - don't allow specify the number of samples to have in each class
 - TomekLnks
 - exist if the two samples are the nearest neighbors of each other

In []:

ex_tomek()

Combination of over-and under-sampling

- generate noisy samples by interpolating new points between marginal outliers and inliers
- · cleaning the resulted space obtained after over-sampling
 - SMOTETomek : SMOTE -> Tomek
 - SMOTEENN : SMOTE -> edited nearest-neighbours

In []:

ex_combi()

