
Dimensionality reduction with t-SNE

Zaur Fataliyev

Slides

● Dimensionality
● Dimensionality Reduction
● Taxonomy of dimensionality reduction techniques
● Principal Component Analysis
● PCA on MNIST
● Why manifold learning?
● Underlying idea of t-SNE
● Stochastic Neighbor Embedding
● Symmetric SNE
● t-Distribution
● t-Distributed Stochastic Neighbor Embedding
● Gradients of various types of SNE
● t-SNE Algorithm
● Results: MNIST
● Results: Olivetti
● Results: COIL-20
● Python Implementation of t-SNE
● References

Dimensionality

Dimensionality Reduction

Dimensionality Reduction aims to map the data from
the original dimension space to lower dimension space
while minimizing information loss.

Reduce number of features for (un)supervised learning

● Feature selection or feature engineering
● Detecting intrinsic dimensionality

Lower computational demand

● Lower memory footprint
● Compression, scalability

Dimensionality Reduction

There are many techniques for dimensionality
reduction. They can be grouped into two
general approaches.

● Projection: projecting high dimensional
data into lower dimensional space.
○ Linear mapping
○ Examples: PCA, LDA, NMF

● Manifold Learning: modeling the manifold
on which the training data lie
○ Nonlinear mapping
○ Examples: SNE, t-SNE,

Autoencoder, Isomaps

Dimensionality
Reduction

Manifold LearningProjection

Taxonomy of dimensionality reduction techniques

Principal Component Analysis (PCA)

def pca(X=np.array([]), no_dims=50):
"""

 Runs PCA on the NxD array X in order to reduce its
dimensionality to no_dims dimensions.
"""

print("Preprocessing the data using PCA...")
(n, d) = X.shape
X = X - np.tile(np.mean(X, 0), (n, 1))
(l, M) = np.linalg.eig(np.dot(X.T, X))
Y = np.dot(X, M[:, 0:no_dims])
return Y

1. Normalize the data
2. Calculate the covariance matrix.
3. Find the eigenvectors of the covariance matrix.
4. Translate the data to be in terms of the components.

https://giphy.com/gifs/pca-Lyejb62QjQepG/fullscreen

https://giphy.com/gifs/pca-Lyejb62QjQepG/fullscreen

PCA on MNIST

Visualization with labels Visualization without labels

Why manifold learning?

Why PCA fails to properly reduce dimensions of MNIST?

● PCA is good, but it is a linear algorithm, meaning
that it cannot represent complex relationship
between features

t-SNE is non-linear dimensionality reduction
technique that has better performance. It is designed
for visualization purposes.

Why not use Neural Networks?

● There is a dimensionality reduction technique based
on Neural Network called Autoencoder!

Good visualization

Patterns

● Discover natural clusters
● Linear relationships
● Visualize embeddings

Technical Requirements

● Each high dimensional object is represented by a low-dimensional object
● Preserve the neighborhood
● Distant points correspond to dissimilar objects
● Scalability: large, high-dimensional data sets

Underlying idea of t-SNE

Stochastic Neighbor Embedding

Stochastic Neighbor Embedding

KL Divergence
Measures the similarity between two probability distributions & it is asymmetric

Stochastic Neighbor Embedding

Derivation of Gradient is given in paper [1]

The result of running the SNE algorithm on 3000
256-dimensional grayscale images of handwritten digits.

Pictures of the original data vectors xi (scans of handwritten
digit) are shown at the location corresponding to their
low-dimensional images yi as found by SNE.

The classes are quite well separated even though SNE had
no information about class labels. Furthermore, within each
class, properties like orientation, skew and strokethickness
tend to vary smoothly across the space.

Not all points are shown: to produce this display, digits are
chosen in random order and are only displayed if a 16 x 16
region of the display centered on the 2-D location of the digit
in the embedding does not overlap any of the 16 x16
regions for digits that have already been displayed.

Stochastic Neighbor Embedding

Symmetric SNE

Symmetric SNE

t-Distribution

Why Student-t Distribution?

Why do we define map similarities as

Suppose data is intrinsically high dimensional

We try to model the local structure of this data in the map

Result: Dissimilar points have to be modeled as too far
apart in the map!

t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding

Gradients of various types of SNE

Gradients of three types of SNE as a function of the pairwise Euclidean distance between two points in the
high-dimensional and the pairwise distance between the points in the low-dimensional data representation.
Positive values of the gradient represent an attraction between the low dimensional data points yi and yj,
whereas negative values represent a repulsion between the two data points.

t-SNE Algorithm

Results: MNIST

Result: Olivetti faces

Results: COIL-20

Implementation

Let’s take a look at Python Implementation

References

1. “Visualizing Data using t-SNE”, L. Maaten, et. al.
2. “Stochastic Neighbor Embedding”, G. Hinton, et. al.
3. t-SNE implementations and other resources - https://lvdmaaten.github.io/tsne/
4. “A Tutorial on Principal Component Analysis”, J. Shlens
5. “Dimensionality Reduction: A Comparative Review”, L. Maaten
6. Google Tech Talks: https://youtu.be/RJVL80Gg3lA

https://lvdmaaten.github.io/tsne/
https://youtu.be/RJVL80Gg3lA

