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Dimensionality



Dimensionality Reduction

Dimensionality Reduction aims to map the data from 
the original dimension space to lower dimension space 
while minimizing information loss. 

Reduce number of features for (un)supervised learning

● Feature selection or feature engineering
● Detecting intrinsic dimensionality

Lower computational demand

● Lower memory footprint
● Compression, scalability



Dimensionality Reduction

There are many techniques for dimensionality 
reduction. They can be grouped into two 
general approaches. 

● Projection: projecting high dimensional 
data into lower dimensional space.
○ Linear mapping
○ Examples: PCA, LDA, NMF

● Manifold Learning: modeling the manifold 
on which the training data lie 
○ Nonlinear mapping
○ Examples: SNE, t-SNE, 

Autoencoder, Isomaps

Dimensionality 
Reduction

Manifold LearningProjection



Taxonomy of dimensionality reduction techniques



Principal Component Analysis (PCA)

def pca(X=np.array([]), no_dims=50):
"""

    Runs PCA on the NxD array X in order to reduce its
dimensionality to no_dims dimensions.
"""

print("Preprocessing the data using PCA...")
(n, d) = X.shape
X = X - np.tile(np.mean(X, 0), (n, 1))
(l, M) = np.linalg.eig(np.dot(X.T, X))
Y = np.dot(X, M[:, 0:no_dims])
return Y

1. Normalize the data
2. Calculate the covariance matrix. 
3. Find the eigenvectors of the covariance matrix.
4. Translate the data to be in terms of the components. 

https://giphy.com/gifs/pca-Lyejb62QjQepG/fullscreen 

https://giphy.com/gifs/pca-Lyejb62QjQepG/fullscreen


PCA on MNIST

Visualization with labels Visualization without labels



Why manifold learning?

Why PCA fails to properly reduce dimensions of MNIST?

● PCA is good, but it is a linear algorithm, meaning 
that it cannot represent complex relationship 
between features

t-SNE is non-linear dimensionality reduction 
technique that has better performance. It is designed 
for visualization purposes. 

Why not use Neural Networks? 

● There is a dimensionality reduction technique based 
on Neural Network called Autoencoder!



Good visualization

Patterns

● Discover natural clusters
● Linear relationships
● Visualize embeddings

Technical Requirements

● Each high dimensional object is represented by a low-dimensional object
● Preserve the neighborhood 
● Distant points correspond to dissimilar objects
● Scalability: large, high-dimensional data sets



Underlying idea of t-SNE



Stochastic Neighbor Embedding



Stochastic Neighbor Embedding



KL Divergence
Measures the similarity between two probability distributions & it is asymmetric



Stochastic Neighbor Embedding 

Derivation of Gradient is given in paper [1]



The result of running the SNE algorithm on 3000 
256-dimensional grayscale images of handwritten digits.

Pictures of the original data vectors xi (scans of handwritten 
digit) are shown at the location corresponding to their 
low-dimensional images yi as found by SNE. 

The classes are quite well separated even though SNE had 
no information about class labels. Furthermore, within each 
class, properties like orientation, skew and strokethickness 
tend to vary smoothly across the space. 

Not all points are shown: to produce this display, digits are 
chosen in random order and are only displayed if a 16 x 16 
region of the display centered on the 2-D location of the digit 
in the embedding does not overlap any of the 16 x16 
regions for digits that have already been displayed.

Stochastic Neighbor Embedding 



Symmetric SNE



Symmetric SNE



t-Distribution



Why Student-t Distribution?

Why do we define map similarities as

Suppose data is intrinsically high dimensional

We try to model the local structure of this data in the map

Result: Dissimilar points have to be modeled as too far 
apart in the map! 



t-Distributed Stochastic Neighbor Embedding



t-Distributed Stochastic Neighbor Embedding



Gradients of various types of SNE

Gradients of three types of SNE as a function of the pairwise Euclidean distance between two points in the 
high-dimensional and the pairwise distance between the points in the low-dimensional data representation.
Positive values of the gradient represent an attraction between the low dimensional data points yi and yj, 
whereas negative values represent a repulsion between the two data points.



t-SNE Algorithm



Results: MNIST



Result: Olivetti faces



Results: COIL-20



Implementation

Let’s take a look at Python Implementation
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