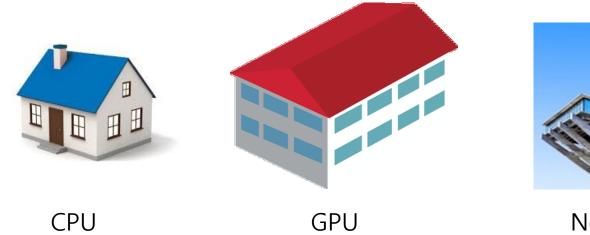
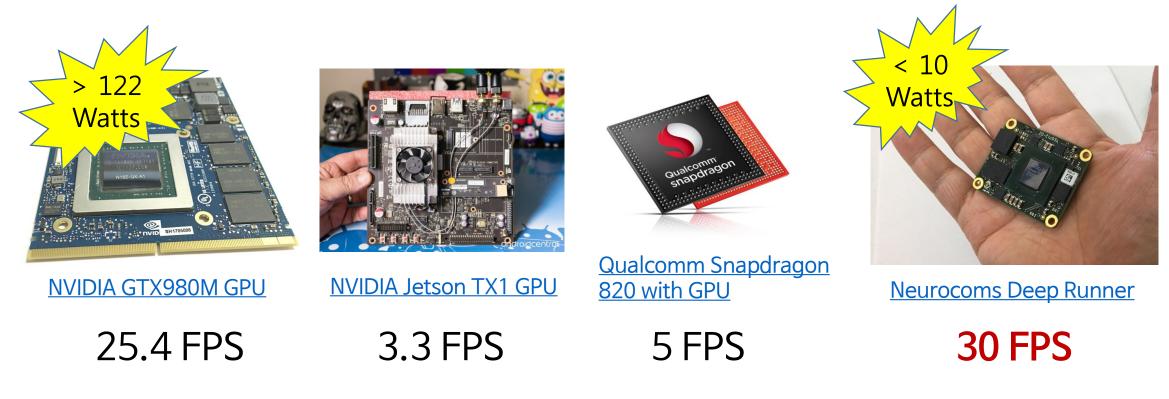
Deep Learning Visual Sensor for Industrial Applications

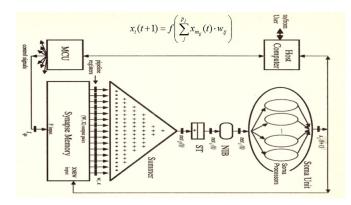

Jerry Byungik Ahn []>O Neurocoms Inc. 2018.7.21

Contents

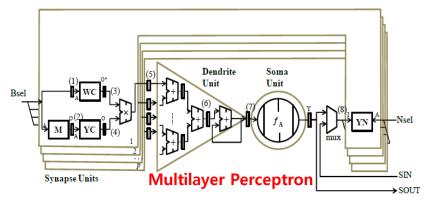
- About the presenter
- Comparison of mobile deep learning hardware
- Our hardware architecture
- Deep Runner Visual Sensor
- Training deep learning models
- Industrial applications
- Conclusion

About the Presenter


- Developer
- Computer architect
 - we value efficiency (speed/resource) rather than just speed
- Founder / CEO of Neurocoms Inc.

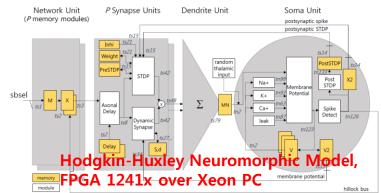

New Architecture

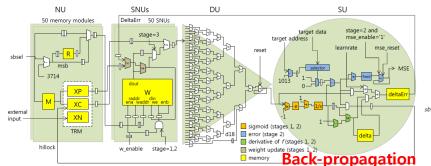
A Comparison of Mobile DL Hardware

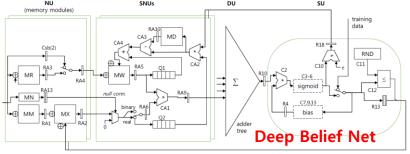


SSD300/MobileNet Object Detection

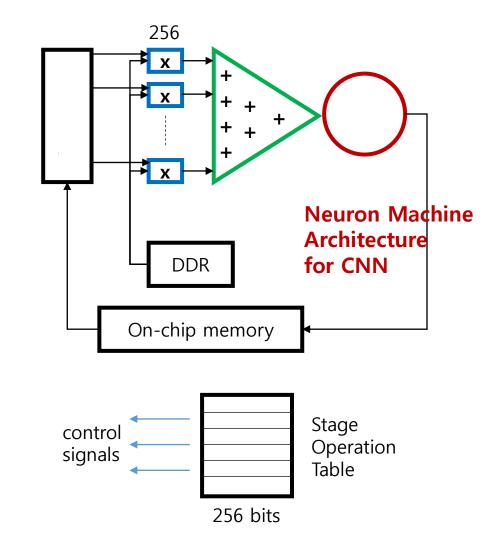

Hardware Architecture: Neuron Machine


"A study on a neuron model architecture for neurocomputing", Master Thesis, KAIST, 1990


"*Neuron machine: Parallel and pipelined digital neurocomputing architecture*", IEEE Cybernetics Com, 2012

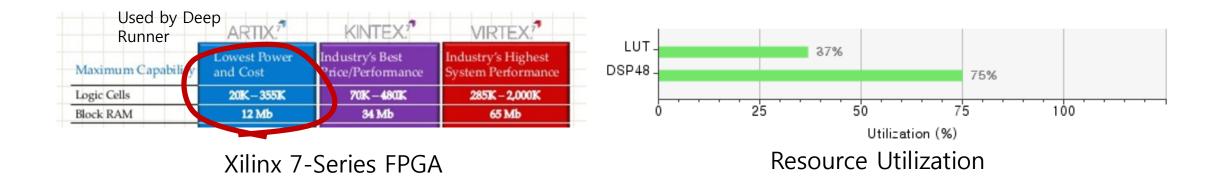

"Extension of neuron machine neurocomputing architecture for spiking neural networks", IEEE IJCNN, 2013

"*Neuron-like Digital Hardware Architecture for Large-scale Neuromorphic Computing*", IEEE IJCNN, 2015

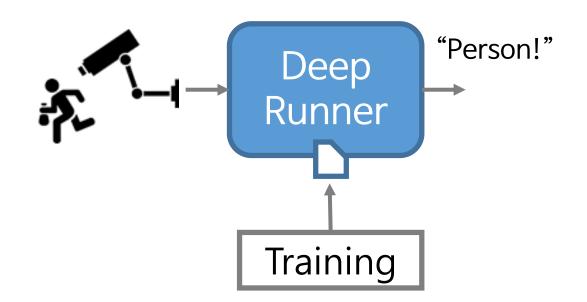

"*Computation of Backpropagation Learning Algorithm Using Neuron Machine Architecture*", IEEE IJCNN, 2013

"*Computation of Deep Belief Networks Using Special-Purpose Hardware Architecture*", IEEE IJCNN, 2014

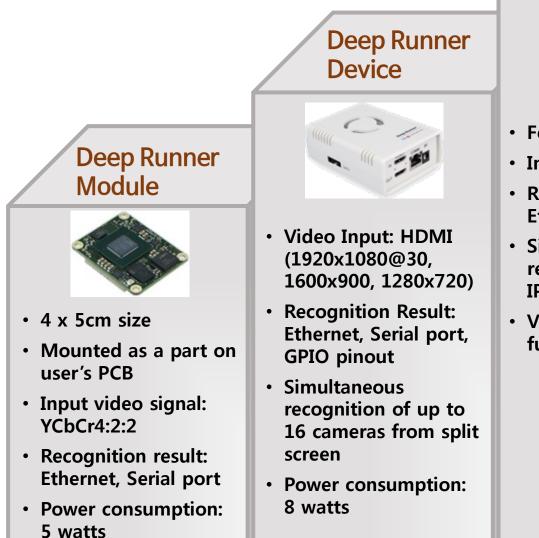
Hardware Architecture: Neuron Machine


- Key ideas
 - Computational circuit same as the computation model (the shape of neuron)
 - Special memory circuit: (1) No inter-stage data movement required, (2) large number of slow memories
- Other properties
 - All self-contained in hardware: no processor involved
 - Fully pipelined and no idle clock cycle for arithmetic operators
 - High utilization of multipliers (see next page)
 - Sort of CISC computer Each instruction for one CNN layer

Multiplier Utilization Comparison


	A	В	С	D	E	F
Hardware	<pre># of cores (multipliers)</pre>		Peak speed (AxB, Gops)	Optimal FPS (C/1.27 ¹⁾)	Actual FPS	Multiplier utilization (E/D)
GTX980M	1536	1.038	1594	1255	25.5	2.03 %
Jetson TX1	256	1.68	430	338.7	3.3	0.96 %
Deep Runner	256	0.2	51.2	40.3	29.5	73.20 %

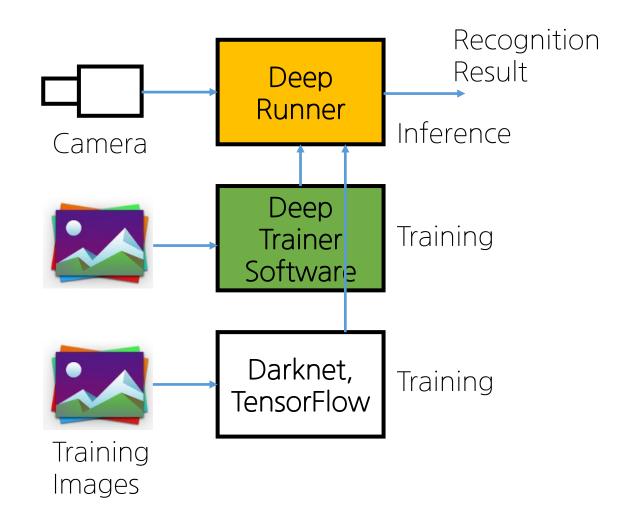
1) 1.27 Giga operations are required for a single SSD300/MobileNet inference



Deep Runner Visual Sensor device

- Industrial device with built-in deep learning algorithms
 - To be used as a component for building intelligent systems
 - No prior knowledge of deep learning is required for user
- Supports multiple DL algorithms
 - GoogLeNet (classification)
 - YOLO, Tiny YOLO (detection)
 - SSD/MobileNet (detection)
 - MobileNet, Xception (classification)

Deep Runner Products


CCTV

Deep Runner

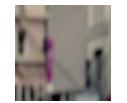
- For CCTV Surveillance
- Input: IP cameras
- Recognition Result: Ethernet
- Simultaneous recognition of up to 8 IP cameras
- Video recording function

Training Procedure

- Deep Trainer
 - Windows software
 - Train classification algorithms
- Darknet
 - Train YOLO and Tiny YOLO object detection algorithms
- TensorFlow
 - Train SSD object detection algorithm

Deep Trainer

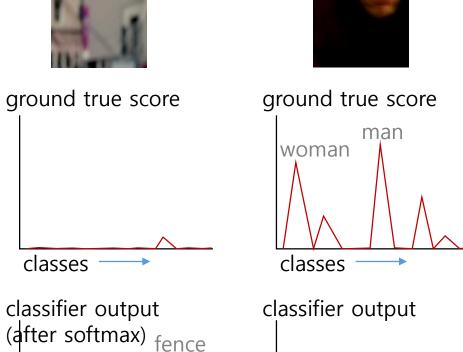
Deep Traine	r					
Session:	teddy_stitcl	n C:₩tmp)		Nev	V Open
Title:	Teddy Bear	r and Stitch				Import
Device:	DeepRunne	er_nc601 🔻	Status	3 🔹		
Algorithm:	GoogleNet Classification	-	im	age feature	trained p model	ackage
Train Data:	Setup	F:₩train₩dolls Classes: 191, Sa	mples: 186971/i	58304, Images; !	533	
Feature Extraction:	Done	-				
Training:	Done	-				
	Training Error			Validation Error		
		11.64%	2.10%	18.94%	4.90%	Test
		Top 1	Top 5	Top 1	Top 5	
Packaging:	Start	Option				
Deep Runner:	Connect	IP Address: 192	2.168.3.10			


Reference Users

Customers	Area	Use		
С	CCTV Surveillance	Show Room		
Ν	CCTV Surveillance	Highway		
S	CCTV Surveillance	CCTV Monitoring Center		
S	CCTV Surveillance			
V, Turkey	CCTV Surveillance			
O, Japan	CCTV Surveillance	Security Camera		
U	CCTV Surveillance			
I, Spain	CCTV Surveillance	Cloud system		
H, Poland	Quality Inspection			
W, China	Quality Inspection			
Т	Quality Inspection			
S	Automotive	Digital Room Mirror		
Н	Automotive	Around view of Excavators		
Н	Automotive	Around view of Excavators		
E, A Univ.,S Univ.	Research, Education			

Limitation of the use of classification

Because of the softmax function, the output of the classifier does not indicates exact score.

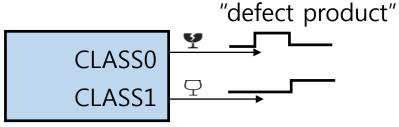


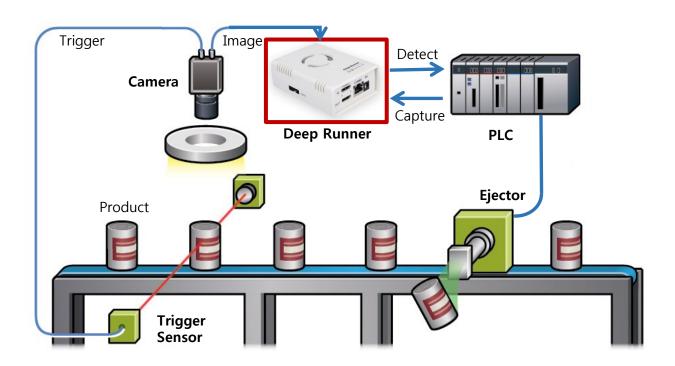
ground true score

classes

classes

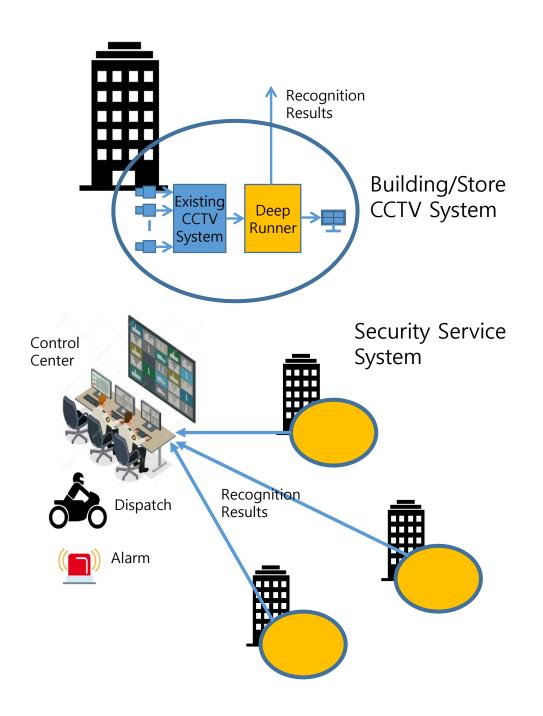
classifier output




Quality Inspection

- The use of classification
- Special features
 - Find small defects in high resolution product images

• PLC pinout communication



CCTV Surveillance

- The use of object detection
- Special feature
 - Recognize multiple cameras simultaneously

Conclusion

- Embedded deep learning will become mainstream
- As a leading company, we shared
 - Our hardware architecture
 - Device specification
 - Applications

- We are seeking
 - Funding for ASIC
 - Typically 50 times more power efficiency could be achieved with ASIC - 200mW with the same speed as Deep Runner
 - Applicable to millions of CCTV equipment
 - Collaboration projects
 - Recruits
 - Distributors