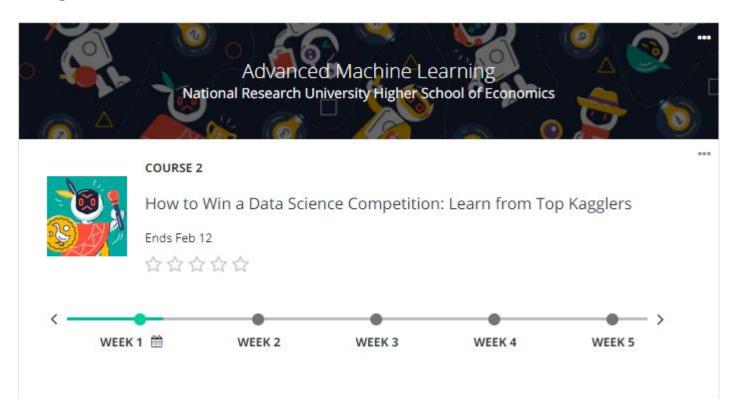
Feature Preprocessing and Generation Tips

Cinyoung Hur Seoul AI 2018.01.06

I'm taking this course



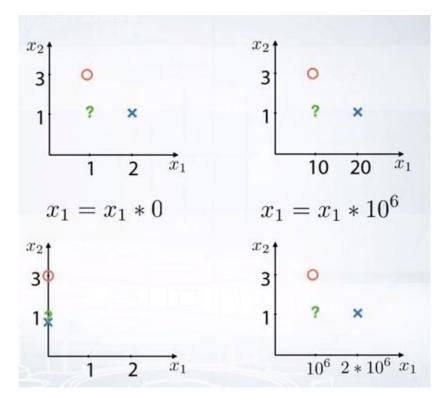
Preprocessing issues

Feature types

Feature types: Numeric features

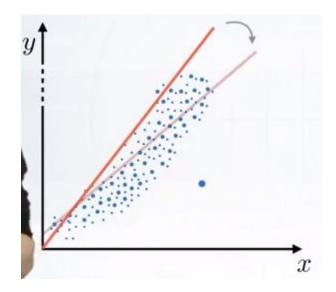
Scaling matters

- [0, 1]
 - MinMaxScaler
- mean=0, std=1
 - StandardScaler



Feature types: Numeric features

Outliers

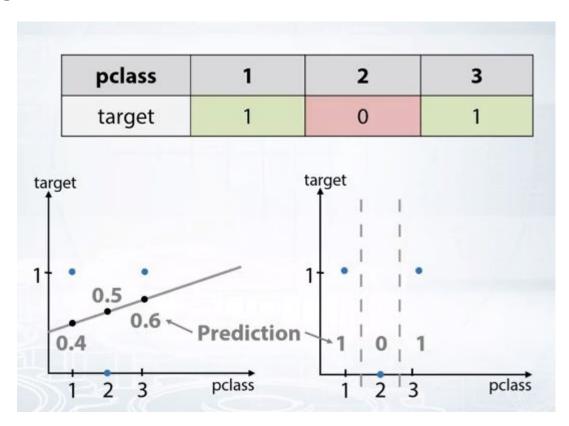


2		1 2	0	3		Drow				
?		2	1			Braund, Mr. Owen H				
			7	1	Cumings, Mrs. John Bradley (I			y (Florence Briggs Th		
3		3	1	3	Heikkinen, Miss. Lair					
		4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)					
1	5			3	Allen, Mr. William Henry					
5	6			3	Moran, Mr. James					
1	7 0			1	McCarthy, Mr. Timothy J					
•	8 0			3	Palsson, Master. Gosta Leonard					
	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked		
	male	22.000000	-1	0	A/5 21171	7.2500	NaN	S		
1	female	38.000000	1	0	PC 17599	71.2833	C85	С		
	female	26.000000	0	0	STON/02. 3101282	7.9250	NaN	s		
1	female	35.000000	- 1	0	113803	53.1000	C123	s		
	male	35.000000	0	0	373450	8.0500	NaN	S		
	male	29.699118	0	0	330877	8.4583	NaN	0		
	male	54.000000	0	0	17463	51,8625	E46	s		

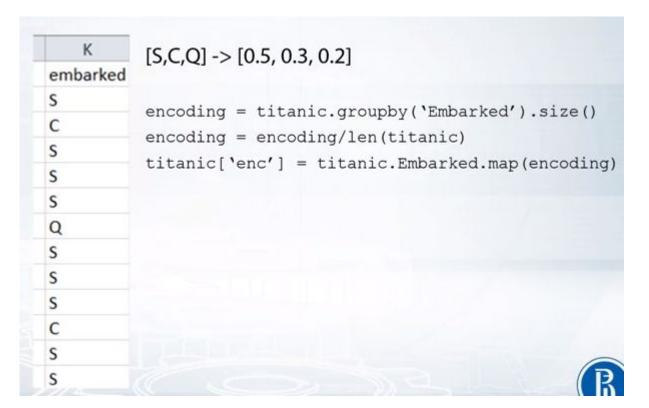
Quiz: Categorical features are beneficial to () model.

- 1. Tree-based model (RandomForest, Decision tree)
- 2. Non-tree based model (Linear model, Neural Network)

Label encoding



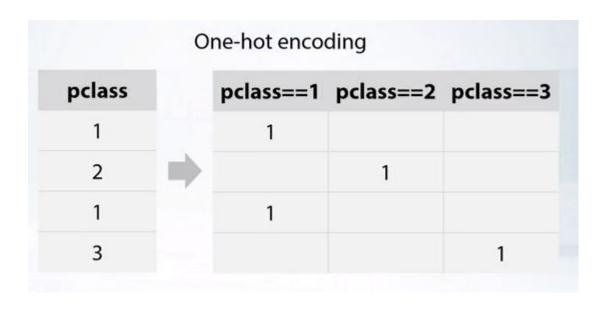
Frequency encoding



Quiz: Can frequency encoding be of help for non-tree based models?

- 1. Yes, it can
- 2. No, it can't

One-hot encoding



Feature generation: Categorical features

	pclas	s	sex		ss_sex					
	3	male		3male						
	1	fe	male	1fe	emale					
	3	fe	male	3fe	emale					
	1	fe	male	e 1female						
		Pclas	s_sex	==						
1male	1female	2male	2fer	nale	3male	3female				
					1					
	1									
						1				
	1									

References

- Feature preprocessing
 - Preprocessing in Sklearn
 - Andrew NG about gradient descent and feature scaling
 - Feature Scaling and the effect of standardization for machine learning algorithms
- Feature generation
 - <u>Discover Feature Engineering</u>, <u>How to Engineer Features and How to Get Good at It</u>
 - <u>Discussion of feature engineering on Quora</u>